This post includes a comprehensive summary of the process we at Green Geotechnics went through to build a machine learning (ML) model for the Data Science Prediction Event created under the framework of the ISFOG2020 conference, to be held in Texas (August 16-19, 2020). The competition was hosted in Kaggle and run through a period of eight months, from April to December 2019. The problem proposed for the prediction event is to use piezocone (CPTu, herein and after denoted as CPT) data to predict blowcounts needed for the installation of jacket piles, located in North Sea soil. A detailed description of the problem can be found here.
We start with loading the data and by doing some exploratory data analysis (EDA), trying to get some initial insights. Then we explore possibilities to incorporate engineering/geotechnical knowledge by introducing new parameters in the analysis. Next, we dive into the model-building process, where we train various ML models, moving from Simple Linear Regressions to more complex models like Neural Networks.
All the analysis is performed using R and the RStudio environment. This report is generated using R Markdown.
We have previously downloaded the data from here and saved them locally. We set the working directory so all the work is saved in one location. Various data sets were provided so we are going to separately load and comment on them.
setwd("F:/isfog2020")
The available data contain information about the soil conditions and installation of 114 jacket piles. The data are divided into two groups:
training
- contains information on 94 piles;validation
- contains information on 20 piles.The training
data will be used to train the ML model
while the validation
data will be used to validate the
model and assess its performance. Let’s read and view the data.
library(tidyverse)
<- read_csv("F:/isfog2020/training_data_cleaned.csv")
training <- read_csv("F:/isfog2020/validation_data_cleaned.csv") validation
library(knitr)
library(kableExtra)
kable(top_n(training, 100),
digits = 3,
caption = "Training data.",
align = "r") %>%
kable_styling(font_size = 11) %>%
row_spec(0, color = "grey10", background = "#F4F5F6") %>%
scroll_box(height = "300px")
z [m] | qc [MPa] | fs [MPa] | u2 [MPa] | ID | Location ID | Blowcount [Blows/m] | Normalised ENTRHU [-] | Normalised hammer energy [-] | Number of blows | Diameter [m] | Bottom wall thickness [mm] | Pile penetration [m] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
4.0 | 11.434 | 0.082 | 0.036 | AA__4_0 | AA | 8 | 0.130 | 0.173 | 8.00 | 2.48 | 55 | 34 |
4.5 | 14.955 | 0.109 | 0.035 | AA__4_5 | AA | 8 | 0.140 | 0.187 | 11.00 | 2.48 | 55 | 34 |
5.0 | 15.722 | 0.125 | 0.037 | AA__5_0 | AA | 8 | 0.151 | 0.201 | 14.00 | 2.48 | 55 | 34 |
5.5 | 15.727 | 0.123 | 0.039 | AA__5_5 | AA | 16 | 0.131 | 0.175 | 29.00 | 2.48 | 55 | 34 |
6.0 | 11.347 | 0.111 | 0.045 | AA__6_0 | AA | 24 | 0.112 | 0.149 | 44.00 | 2.48 | 55 | 34 |
6.5 | 13.989 | 0.105 | 0.051 | AA__6_5 | AA | 22 | 0.147 | 0.195 | 55.00 | 2.48 | 55 | 34 |
7.0 | 16.632 | 0.098 | 0.058 | AA__7_0 | AA | 20 | 0.182 | 0.242 | 66.00 | 2.48 | 55 | 34 |
7.5 | 24.536 | 0.146 | 0.063 | AA__7_5 | AA | 24 | 0.174 | 0.233 | 77.50 | 2.48 | 55 | 34 |
8.0 | 24.622 | 0.183 | 0.059 | AA__8_0 | AA | 28 | 0.167 | 0.223 | 89.00 | 2.48 | 55 | 34 |
8.5 | 24.245 | 0.191 | 0.058 | AA__8_5 | AA | 34 | 0.171 | 0.228 | 105.50 | 2.48 | 55 | 34 |
9.0 | 28.871 | 0.175 | 0.058 | AA__9_0 | AA | 40 | 0.175 | 0.233 | 122.00 | 2.48 | 55 | 34 |
9.5 | 25.603 | 0.181 | 0.061 | AA__9_5 | AA | 64 | 0.181 | 0.242 | 162.00 | 2.48 | 55 | 34 |
10.0 | 28.036 | 0.153 | 0.069 | AA__10_0 | AA | 88 | 0.188 | 0.251 | 202.00 | 2.48 | 55 | 34 |
10.5 | 25.148 | 0.132 | 0.089 | AA__10_5 | AA | 88 | 0.206 | 0.274 | 245.50 | 2.48 | 55 | 34 |
11.0 | 24.442 | 0.203 | 0.087 | AA__11_0 | AA | 88 | 0.223 | 0.298 | 289.00 | 2.48 | 55 | 34 |
11.5 | 6.894 | 0.084 | 0.085 | AA__11_5 | AA | 74 | 0.225 | 0.300 | 325.50 | 2.48 | 55 | 34 |
12.0 | 5.528 | 0.039 | 0.020 | AA__12_0 | AA | 60 | 0.227 | 0.302 | 362.00 | 2.48 | 55 | 34 |
12.5 | 6.805 | 0.052 | 0.097 | AA__12_5 | AA | 36 | 0.251 | 0.334 | 372.00 | 2.48 | 55 | 34 |
13.0 | 6.492 | 0.048 | 0.106 | AA__13_0 | AA | 12 | 0.275 | 0.367 | 382.00 | 2.48 | 55 | 34 |
13.5 | 8.541 | 0.032 | -0.043 | AA__13_5 | AA | 10 | 0.269 | 0.358 | 387.50 | 2.48 | 55 | 34 |
14.0 | 28.151 | 0.167 | -0.114 | AA__14_0 | AA | 8 | 0.262 | 0.350 | 393.00 | 2.48 | 55 | 34 |
14.5 | 23.779 | 0.187 | -0.067 | AA__14_5 | AA | 10 | 0.214 | 0.286 | 398.50 | 2.48 | 55 | 34 |
15.0 | 12.522 | 0.118 | -0.362 | AA__15_0 | AA | 12 | 0.166 | 0.221 | 404.00 | 2.48 | 55 | 34 |
15.5 | 6.764 | 0.043 | -0.339 | AA__15_5 | AA | 20 | 0.187 | 0.249 | 414.50 | 2.48 | 55 | 34 |
16.0 | 7.552 | 0.052 | -0.261 | AA__16_0 | AA | 28 | 0.208 | 0.277 | 425.00 | 2.48 | 55 | 34 |
16.5 | 5.400 | 0.022 | -0.145 | AA__16_5 | AA | 22 | 0.213 | 0.284 | 432.50 | 2.48 | 55 | 34 |
17.0 | 5.900 | 0.017 | -0.093 | AA__17_0 | AA | 16 | 0.219 | 0.292 | 440.00 | 2.48 | 55 | 34 |
17.5 | 4.048 | 0.024 | -0.144 | AA__17_5 | AA | 28 | 0.213 | 0.284 | 450.50 | 2.48 | 55 | 34 |
18.0 | 20.823 | 0.108 | -0.294 | AA__18_0 | AA | 40 | 0.207 | 0.276 | 461.00 | 2.48 | 55 | 34 |
18.5 | 27.700 | 0.225 | -0.238 | AA__18_5 | AA | 70 | 0.214 | 0.286 | 507.00 | 2.48 | 55 | 34 |
19.0 | 25.179 | 0.177 | -0.188 | AA__19_0 | AA | 100 | 0.222 | 0.296 | 553.00 | 2.48 | 55 | 34 |
19.5 | 22.926 | 0.151 | -0.069 | AA__19_5 | AA | 108 | 0.255 | 0.341 | 611.00 | 2.48 | 55 | 34 |
20.0 | 20.674 | 0.124 | 0.049 | AA__20_0 | AA | 116 | 0.289 | 0.386 | 669.00 | 2.48 | 55 | 34 |
20.5 | 25.997 | 0.231 | 0.185 | AA__20_5 | AA | 126 | 0.293 | 0.390 | 733.00 | 2.48 | 55 | 34 |
21.0 | 29.572 | 0.304 | 0.175 | AA__21_0 | AA | 136 | 0.296 | 0.395 | 797.00 | 2.48 | 55 | 34 |
21.5 | 40.627 | 0.408 | 0.158 | AA__21_5 | AA | 128 | 0.311 | 0.415 | 859.50 | 2.48 | 55 | 34 |
22.0 | 39.834 | 0.368 | 0.170 | AA__22_0 | AA | 120 | 0.326 | 0.434 | 922.00 | 2.48 | 55 | 34 |
22.5 | 34.681 | 0.356 | 0.163 | AA__22_5 | AA | 122 | 0.324 | 0.432 | 988.50 | 2.48 | 55 | 34 |
23.0 | 26.795 | 0.273 | 0.166 | AA__23_0 | AA | 124 | 0.322 | 0.430 | 1055.00 | 2.48 | 55 | 34 |
23.5 | 21.606 | 0.222 | 0.205 | AA__23_5 | AA | 124 | 0.352 | 0.469 | 1118.50 | 2.48 | 55 | 34 |
24.0 | 27.394 | 0.295 | 0.197 | AA__24_0 | AA | 124 | 0.381 | 0.508 | 1182.00 | 2.48 | 55 | 34 |
24.5 | 20.538 | 0.258 | 0.198 | AA__24_5 | AA | 122 | 0.388 | 0.517 | 1239.50 | 2.48 | 55 | 34 |
25.0 | 27.088 | 0.211 | -0.038 | AA__25_0 | AA | 120 | 0.395 | 0.526 | 1297.00 | 2.48 | 55 | 34 |
25.5 | 35.413 | 0.319 | 0.210 | AA__25_5 | AA | 104 | 0.426 | 0.568 | 1354.50 | 2.48 | 55 | 34 |
26.0 | 36.892 | 0.315 | 0.215 | AA__26_0 | AA | 88 | 0.457 | 0.609 | 1412.00 | 2.48 | 55 | 34 |
26.5 | 46.709 | 0.456 | 0.250 | AA__26_5 | AA | 94 | 0.489 | 0.653 | 1459.50 | 2.48 | 55 | 34 |
27.0 | 45.741 | 0.473 | 0.238 | AA__27_0 | AA | 100 | 0.522 | 0.696 | 1507.00 | 2.48 | 55 | 34 |
27.5 | 50.310 | 0.469 | 0.211 | AA__27_5 | AA | 92 | 0.573 | 0.763 | 1553.00 | 2.48 | 55 | 34 |
28.0 | 42.441 | 0.388 | 0.267 | AA__28_0 | AA | 84 | 0.623 | 0.831 | 1599.00 | 2.48 | 55 | 34 |
28.5 | 42.527 | 0.487 | 0.292 | AA__28_5 | AA | 84 | 0.618 | 0.824 | 1643.00 | 2.48 | 55 | 34 |
29.0 | 53.361 | 0.661 | 0.297 | AA__29_0 | AA | 84 | 0.613 | 0.817 | 1687.00 | 2.48 | 55 | 34 |
29.5 | 47.392 | 0.373 | 0.302 | AA__29_5 | AA | 88 | 0.622 | 0.830 | 1731.50 | 2.48 | 55 | 34 |
30.0 | 44.926 | 0.521 | 0.308 | AA__30_0 | AA | 92 | 0.632 | 0.843 | 1776.00 | 2.48 | 55 | 34 |
30.5 | 46.653 | 0.574 | 0.313 | AA__30_5 | AA | 92 | 0.630 | 0.840 | 1820.00 | 2.48 | 55 | 34 |
31.0 | 51.331 | 0.652 | 0.318 | AA__31_0 | AA | 92 | 0.628 | 0.837 | 1864.00 | 2.48 | 55 | 34 |
31.5 | 48.796 | 0.531 | 0.323 | AA__31_5 | AA | 90 | 0.628 | 0.837 | 1909.00 | 2.48 | 55 | 34 |
32.0 | 46.261 | 0.411 | 0.328 | AA__32_0 | AA | 88 | 0.628 | 0.837 | 1954.00 | 2.48 | 55 | 34 |
32.5 | 59.915 | 0.812 | 0.333 | AA__32_5 | AA | 90 | 0.630 | 0.841 | 2001.00 | 2.48 | 55 | 34 |
33.0 | 60.356 | 0.810 | 0.338 | AA__33_0 | AA | 92 | 0.633 | 0.844 | 2048.00 | 2.48 | 55 | 34 |
33.5 | 57.943 | 0.757 | 0.343 | AA__33_5 | AA | 90 | 0.649 | 0.865 | 2094.00 | 2.48 | 55 | 34 |
34.0 | 58.148 | 0.677 | 0.348 | AA__34_0 | AA | 88 | 0.664 | 0.886 | 2140.00 | 2.48 | 55 | 34 |
5.0 | 15.722 | 0.125 | 0.037 | AB__5_0 | AB | 8 | 0.117 | 0.157 | 14.00 | 2.48 | 55 | 34 |
5.5 | 15.727 | 0.123 | 0.039 | AB__5_5 | AB | 8 | 0.115 | 0.154 | 20.50 | 2.48 | 55 | 34 |
6.0 | 11.347 | 0.111 | 0.045 | AB__6_0 | AB | 8 | 0.113 | 0.151 | 27.00 | 2.48 | 55 | 34 |
6.5 | 13.989 | 0.105 | 0.051 | AB__6_5 | AB | 6 | 0.151 | 0.202 | 30.00 | 2.48 | 55 | 34 |
7.0 | 16.632 | 0.098 | 0.058 | AB__7_0 | AB | 4 | 0.189 | 0.252 | 33.00 | 2.48 | 55 | 34 |
7.5 | 24.536 | 0.146 | 0.063 | AB__7_5 | AB | 16 | 0.152 | 0.202 | 43.00 | 2.48 | 55 | 34 |
8.0 | 24.622 | 0.183 | 0.059 | AB__8_0 | AB | 28 | 0.114 | 0.152 | 53.00 | 2.48 | 55 | 34 |
8.5 | 24.245 | 0.191 | 0.058 | AB__8_5 | AB | 66 | 0.113 | 0.150 | 98.50 | 2.48 | 55 | 34 |
9.0 | 28.871 | 0.175 | 0.058 | AB__9_0 | AB | 104 | 0.112 | 0.149 | 144.00 | 2.48 | 55 | 34 |
9.5 | 25.603 | 0.181 | 0.061 | AB__9_5 | AB | 90 | 0.137 | 0.182 | 182.00 | 2.48 | 55 | 34 |
10.0 | 28.036 | 0.153 | 0.069 | AB__10_0 | AB | 76 | 0.162 | 0.216 | 220.00 | 2.48 | 55 | 34 |
10.5 | 25.148 | 0.132 | 0.089 | AB__10_5 | AB | 96 | 0.165 | 0.220 | 266.50 | 2.48 | 55 | 34 |
11.0 | 24.442 | 0.203 | 0.087 | AB__11_0 | AB | 116 | 0.168 | 0.224 | 313.00 | 2.48 | 55 | 34 |
11.5 | 6.894 | 0.084 | 0.085 | AB__11_5 | AB | 98 | 0.205 | 0.273 | 362.50 | 2.48 | 55 | 34 |
12.0 | 5.528 | 0.039 | 0.020 | AB__12_0 | AB | 80 | 0.242 | 0.322 | 412.00 | 2.48 | 55 | 34 |
12.5 | 6.805 | 0.052 | 0.097 | AB__12_5 | AB | 68 | 0.244 | 0.325 | 448.50 | 2.48 | 55 | 34 |
13.0 | 6.492 | 0.048 | 0.106 | AB__13_0 | AB | 56 | 0.246 | 0.328 | 485.00 | 2.48 | 55 | 34 |
13.5 | 8.541 | 0.032 | -0.043 | AB__13_5 | AB | 38 | 0.242 | 0.322 | 495.00 | 2.48 | 55 | 34 |
14.0 | 28.151 | 0.167 | -0.114 | AB__14_0 | AB | 20 | 0.237 | 0.316 | 505.00 | 2.48 | 55 | 34 |
14.5 | 23.779 | 0.187 | -0.067 | AB__14_5 | AB | 20 | 0.208 | 0.278 | 515.50 | 2.48 | 55 | 34 |
15.0 | 12.522 | 0.118 | -0.362 | AB__15_0 | AB | 20 | 0.180 | 0.240 | 526.00 | 2.48 | 55 | 34 |
15.5 | 6.764 | 0.043 | -0.339 | AB__15_5 | AB | 24 | 0.188 | 0.250 | 546.50 | 2.48 | 55 | 34 |
16.0 | 7.552 | 0.052 | -0.261 | AB__16_0 | AB | 28 | 0.195 | 0.260 | 567.00 | 2.48 | 55 | 34 |
16.5 | 5.400 | 0.022 | -0.145 | AB__16_5 | AB | 28 | 0.198 | 0.264 | 581.00 | 2.48 | 55 | 34 |
17.0 | 5.900 | 0.017 | -0.093 | AB__17_0 | AB | 28 | 0.201 | 0.268 | 595.00 | 2.48 | 55 | 34 |
17.5 | 4.048 | 0.024 | -0.144 | AB__17_5 | AB | 48 | 0.196 | 0.261 | 615.50 | 2.48 | 55 | 34 |
18.0 | 20.823 | 0.108 | -0.294 | AB__18_0 | AB | 68 | 0.191 | 0.255 | 636.00 | 2.48 | 55 | 34 |
18.5 | 27.700 | 0.225 | -0.238 | AB__18_5 | AB | 82 | 0.225 | 0.299 | 684.50 | 2.48 | 55 | 34 |
19.0 | 25.179 | 0.177 | -0.188 | AB__19_0 | AB | 96 | 0.258 | 0.344 | 733.00 | 2.48 | 55 | 34 |
19.5 | 22.926 | 0.151 | -0.069 | AB__19_5 | AB | 90 | 0.313 | 0.418 | 779.00 | 2.48 | 55 | 34 |
20.0 | 20.674 | 0.124 | 0.049 | AB__20_0 | AB | 84 | 0.369 | 0.492 | 825.00 | 2.48 | 55 | 34 |
20.5 | 25.997 | 0.231 | 0.185 | AB__20_5 | AB | 92 | 0.383 | 0.510 | 871.00 | 2.48 | 55 | 34 |
21.0 | 29.572 | 0.304 | 0.175 | AB__21_0 | AB | 100 | 0.397 | 0.529 | 917.00 | 2.48 | 55 | 34 |
21.5 | 40.627 | 0.408 | 0.158 | AB__21_5 | AB | 104 | 0.385 | 0.513 | 968.00 | 2.48 | 55 | 34 |
22.0 | 39.834 | 0.368 | 0.170 | AB__22_0 | AB | 108 | 0.373 | 0.498 | 1019.00 | 2.48 | 55 | 34 |
22.5 | 34.681 | 0.356 | 0.163 | AB__22_5 | AB | 102 | 0.419 | 0.559 | 1067.00 | 2.48 | 55 | 34 |
23.0 | 26.795 | 0.273 | 0.166 | AB__23_0 | AB | 96 | 0.465 | 0.620 | 1115.00 | 2.48 | 55 | 34 |
23.5 | 21.606 | 0.222 | 0.205 | AB__23_5 | AB | 90 | 0.495 | 0.661 | 1159.50 | 2.48 | 55 | 34 |
24.0 | 27.394 | 0.295 | 0.197 | AB__24_0 | AB | 84 | 0.526 | 0.702 | 1204.00 | 2.48 | 55 | 34 |
24.5 | 20.538 | 0.258 | 0.198 | AB__24_5 | AB | 86 | 0.553 | 0.738 | 1248.50 | 2.48 | 55 | 34 |
25.0 | 27.088 | 0.211 | -0.038 | AB__25_0 | AB | 88 | 0.580 | 0.774 | 1293.00 | 2.48 | 55 | 34 |
25.5 | 35.413 | 0.319 | 0.210 | AB__25_5 | AB | 86 | 0.590 | 0.787 | 1336.50 | 2.48 | 55 | 34 |
26.0 | 36.892 | 0.315 | 0.215 | AB__26_0 | AB | 84 | 0.600 | 0.799 | 1380.00 | 2.48 | 55 | 34 |
26.5 | 46.709 | 0.456 | 0.250 | AB__26_5 | AB | 84 | 0.594 | 0.792 | 1432.00 | 2.48 | 55 | 34 |
27.0 | 45.741 | 0.473 | 0.238 | AB__27_0 | AB | 84 | 0.589 | 0.785 | 1484.00 | 2.48 | 55 | 34 |
27.5 | 50.310 | 0.469 | 0.211 | AB__27_5 | AB | 84 | 0.601 | 0.801 | 1528.00 | 2.48 | 55 | 34 |
28.0 | 42.441 | 0.388 | 0.267 | AB__28_0 | AB | 84 | 0.613 | 0.817 | 1572.00 | 2.48 | 55 | 34 |
28.5 | 42.527 | 0.487 | 0.292 | AB__28_5 | AB | 86 | 0.610 | 0.813 | 1618.00 | 2.48 | 55 | 34 |
29.0 | 53.361 | 0.661 | 0.297 | AB__29_0 | AB | 88 | 0.606 | 0.808 | 1664.00 | 2.48 | 55 | 34 |
29.5 | 47.392 | 0.373 | 0.302 | AB__29_5 | AB | 92 | 0.606 | 0.808 | 1710.50 | 2.48 | 55 | 34 |
30.0 | 44.926 | 0.521 | 0.308 | AB__30_0 | AB | 96 | 0.607 | 0.809 | 1757.00 | 2.48 | 55 | 34 |
30.5 | 46.653 | 0.574 | 0.313 | AB__30_5 | AB | 96 | 0.615 | 0.820 | 1803.50 | 2.48 | 55 | 34 |
31.0 | 51.331 | 0.652 | 0.318 | AB__31_0 | AB | 96 | 0.623 | 0.830 | 1850.00 | 2.48 | 55 | 34 |
31.5 | 48.796 | 0.531 | 0.323 | AB__31_5 | AB | 96 | 0.617 | 0.822 | 1898.50 | 2.48 | 55 | 34 |
32.0 | 46.261 | 0.411 | 0.328 | AB__32_0 | AB | 96 | 0.610 | 0.814 | 1947.00 | 2.48 | 55 | 34 |
32.5 | 59.915 | 0.812 | 0.333 | AB__32_5 | AB | 102 | 0.600 | 0.800 | 2000.50 | 2.48 | 55 | 34 |
33.0 | 60.356 | 0.810 | 0.338 | AB__33_0 | AB | 108 | 0.590 | 0.786 | 2054.00 | 2.48 | 55 | 34 |
33.5 | 57.943 | 0.757 | 0.343 | AB__33_5 | AB | 106 | 0.573 | 0.764 | 2112.50 | 2.48 | 55 | 34 |
34.0 | 58.148 | 0.677 | 0.348 | AB__34_0 | AB | 104 | 0.556 | 0.742 | 2171.00 | 2.48 | 55 | 34 |
4.0 | 11.434 | 0.082 | 0.036 | AC__4_0 | AC | 6 | 0.118 | 0.158 | 6.50 | 2.48 | 55 | 34 |
4.5 | 14.955 | 0.109 | 0.035 | AC__4_5 | AC | 5 | 0.112 | 0.150 | 7.25 | 2.48 | 55 | 34 |
5.0 | 15.722 | 0.125 | 0.037 | AC__5_0 | AC | 4 | 0.106 | 0.142 | 8.00 | 2.48 | 55 | 34 |
5.5 | 15.727 | 0.123 | 0.039 | AC__5_5 | AC | 10 | 0.104 | 0.139 | 14.50 | 2.48 | 55 | 34 |
6.0 | 11.347 | 0.111 | 0.045 | AC__6_0 | AC | 16 | 0.103 | 0.137 | 21.00 | 2.48 | 55 | 34 |
6.5 | 13.989 | 0.105 | 0.051 | AC__6_5 | AC | 20 | 0.104 | 0.139 | 31.00 | 2.48 | 55 | 34 |
7.0 | 16.632 | 0.098 | 0.058 | AC__7_0 | AC | 24 | 0.106 | 0.142 | 41.00 | 2.48 | 55 | 34 |
7.5 | 24.536 | 0.146 | 0.063 | AC__7_5 | AC | 38 | 0.122 | 0.163 | 63.00 | 2.48 | 55 | 34 |
8.0 | 24.622 | 0.183 | 0.059 | AC__8_0 | AC | 52 | 0.138 | 0.184 | 85.00 | 2.48 | 55 | 34 |
8.5 | 24.245 | 0.191 | 0.058 | AC__8_5 | AC | 48 | 0.169 | 0.225 | 112.00 | 2.48 | 55 | 34 |
9.0 | 28.871 | 0.175 | 0.058 | AC__9_0 | AC | 44 | 0.199 | 0.265 | 139.00 | 2.48 | 55 | 34 |
9.5 | 25.603 | 0.181 | 0.061 | AC__9_5 | AC | 62 | 0.191 | 0.255 | 171.00 | 2.48 | 55 | 34 |
10.0 | 28.036 | 0.153 | 0.069 | AC__10_0 | AC | 80 | 0.183 | 0.244 | 203.00 | 2.48 | 55 | 34 |
10.5 | 25.148 | 0.132 | 0.089 | AC__10_5 | AC | 88 | 0.204 | 0.272 | 251.00 | 2.48 | 55 | 34 |
11.0 | 24.442 | 0.203 | 0.087 | AC__11_0 | AC | 96 | 0.225 | 0.300 | 299.00 | 2.48 | 55 | 34 |
11.5 | 6.894 | 0.084 | 0.085 | AC__11_5 | AC | 84 | 0.258 | 0.344 | 342.50 | 2.48 | 55 | 34 |
12.0 | 5.528 | 0.039 | 0.020 | AC__12_0 | AC | 72 | 0.290 | 0.387 | 386.00 | 2.48 | 55 | 34 |
12.5 | 6.805 | 0.052 | 0.097 | AC__12_5 | AC | 76 | 0.267 | 0.356 | 427.00 | 2.48 | 55 | 34 |
13.0 | 6.492 | 0.048 | 0.106 | AC__13_0 | AC | 80 | 0.244 | 0.325 | 468.00 | 2.48 | 55 | 34 |
13.5 | 8.541 | 0.032 | -0.043 | AC__13_5 | AC | 54 | 0.244 | 0.325 | 491.00 | 2.48 | 55 | 34 |
14.0 | 28.151 | 0.167 | -0.114 | AC__14_0 | AC | 28 | 0.243 | 0.324 | 514.00 | 2.48 | 55 | 34 |
14.5 | 23.779 | 0.187 | -0.067 | AC__14_5 | AC | 28 | 0.289 | 0.385 | 525.50 | 2.48 | 55 | 34 |
15.0 | 12.522 | 0.118 | -0.362 | AC__15_0 | AC | 28 | 0.334 | 0.445 | 537.00 | 2.48 | 55 | 34 |
15.5 | 6.764 | 0.043 | -0.339 | AC__15_5 | AC | 26 | 0.322 | 0.429 | 547.00 | 2.48 | 55 | 34 |
16.0 | 7.552 | 0.052 | -0.261 | AC__16_0 | AC | 24 | 0.310 | 0.413 | 557.00 | 2.48 | 55 | 34 |
16.5 | 5.400 | 0.022 | -0.145 | AC__16_5 | AC | 20 | 0.300 | 0.400 | 565.50 | 2.48 | 55 | 34 |
17.0 | 5.900 | 0.017 | -0.093 | AC__17_0 | AC | 16 | 0.290 | 0.387 | 574.00 | 2.48 | 55 | 34 |
17.5 | 4.048 | 0.024 | -0.144 | AC__17_5 | AC | 18 | 0.267 | 0.356 | 583.50 | 2.48 | 55 | 34 |
18.0 | 20.823 | 0.108 | -0.294 | AC__18_0 | AC | 20 | 0.244 | 0.326 | 593.00 | 2.48 | 55 | 34 |
18.5 | 27.700 | 0.225 | -0.238 | AC__18_5 | AC | 72 | 0.217 | 0.290 | 626.50 | 2.48 | 55 | 34 |
19.0 | 25.179 | 0.177 | -0.188 | AC__19_0 | AC | 124 | 0.190 | 0.254 | 660.00 | 2.48 | 55 | 34 |
19.5 | 22.926 | 0.151 | -0.069 | AC__19_5 | AC | 100 | 0.279 | 0.372 | 709.00 | 2.48 | 55 | 34 |
20.0 | 20.674 | 0.124 | 0.049 | AC__20_0 | AC | 76 | 0.368 | 0.490 | 758.00 | 2.48 | 55 | 34 |
20.5 | 25.997 | 0.231 | 0.185 | AC__20_5 | AC | 90 | 0.387 | 0.516 | 808.00 | 2.48 | 55 | 34 |
21.0 | 29.572 | 0.304 | 0.175 | AC__21_0 | AC | 104 | 0.407 | 0.543 | 858.00 | 2.48 | 55 | 34 |
21.5 | 40.627 | 0.408 | 0.158 | AC__21_5 | AC | 98 | 0.452 | 0.603 | 903.50 | 2.48 | 55 | 34 |
22.0 | 39.834 | 0.368 | 0.170 | AC__22_0 | AC | 92 | 0.498 | 0.664 | 949.00 | 2.48 | 55 | 34 |
22.5 | 34.681 | 0.356 | 0.163 | AC__22_5 | AC | 92 | 0.507 | 0.677 | 994.50 | 2.48 | 55 | 34 |
23.0 | 26.795 | 0.273 | 0.166 | AC__23_0 | AC | 92 | 0.517 | 0.690 | 1040.00 | 2.48 | 55 | 34 |
23.5 | 21.606 | 0.222 | 0.205 | AC__23_5 | AC | 90 | 0.518 | 0.691 | 1088.50 | 2.48 | 55 | 34 |
24.0 | 27.394 | 0.295 | 0.197 | AC__24_0 | AC | 88 | 0.519 | 0.692 | 1137.00 | 2.48 | 55 | 34 |
24.5 | 20.538 | 0.258 | 0.198 | AC__24_5 | AC | 94 | 0.531 | 0.709 | 1184.50 | 2.48 | 55 | 34 |
25.0 | 27.088 | 0.211 | -0.038 | AC__25_0 | AC | 100 | 0.544 | 0.725 | 1232.00 | 2.48 | 55 | 34 |
25.5 | 35.413 | 0.319 | 0.210 | AC__25_5 | AC | 98 | 0.560 | 0.746 | 1280.50 | 2.48 | 55 | 34 |
26.0 | 36.892 | 0.315 | 0.215 | AC__26_0 | AC | 96 | 0.576 | 0.768 | 1329.00 | 2.48 | 55 | 34 |
26.5 | 46.709 | 0.456 | 0.250 | AC__26_5 | AC | 94 | 0.582 | 0.776 | 1373.00 | 2.48 | 55 | 34 |
27.0 | 45.741 | 0.473 | 0.238 | AC__27_0 | AC | 92 | 0.588 | 0.784 | 1417.00 | 2.48 | 55 | 34 |
27.5 | 50.310 | 0.469 | 0.211 | AC__27_5 | AC | 92 | 0.593 | 0.790 | 1464.00 | 2.48 | 55 | 34 |
28.0 | 42.441 | 0.388 | 0.267 | AC__28_0 | AC | 92 | 0.597 | 0.796 | 1511.00 | 2.48 | 55 | 34 |
28.5 | 42.527 | 0.487 | 0.292 | AC__28_5 | AC | 94 | 0.586 | 0.781 | 1557.50 | 2.48 | 55 | 34 |
29.0 | 53.361 | 0.661 | 0.297 | AC__29_0 | AC | 96 | 0.574 | 0.766 | 1604.00 | 2.48 | 55 | 34 |
29.5 | 47.392 | 0.373 | 0.302 | AC__29_5 | AC | 108 | 0.516 | 0.689 | 1670.00 | 2.48 | 55 | 34 |
30.0 | 44.926 | 0.521 | 0.308 | AC__30_0 | AC | 120 | 0.459 | 0.612 | 1736.00 | 2.48 | 55 | 34 |
30.5 | 46.653 | 0.574 | 0.313 | AC__30_5 | AC | 110 | 0.502 | 0.670 | 1784.50 | 2.48 | 55 | 34 |
31.0 | 51.331 | 0.652 | 0.318 | AC__31_0 | AC | 100 | 0.546 | 0.728 | 1833.00 | 2.48 | 55 | 34 |
31.5 | 48.796 | 0.531 | 0.323 | AC__31_5 | AC | 98 | 0.562 | 0.750 | 1883.00 | 2.48 | 55 | 34 |
32.0 | 46.261 | 0.411 | 0.328 | AC__32_0 | AC | 96 | 0.579 | 0.771 | 1933.00 | 2.48 | 55 | 34 |
32.5 | 59.915 | 0.812 | 0.333 | AC__32_5 | AC | 94 | 0.589 | 0.786 | 1981.00 | 2.48 | 55 | 34 |
33.0 | 60.356 | 0.810 | 0.338 | AC__33_0 | AC | 92 | 0.600 | 0.800 | 2029.00 | 2.48 | 55 | 34 |
33.5 | 57.943 | 0.757 | 0.343 | AC__33_5 | AC | 102 | 0.591 | 0.788 | 2080.00 | 2.48 | 55 | 34 |
34.0 | 58.148 | 0.677 | 0.348 | AC__34_0 | AC | 112 | 0.583 | 0.777 | 2131.00 | 2.48 | 55 | 34 |
kable(top_n(validation, 100),
digits = 3,
caption = "Validation data.",
align = "r") %>%
kable_styling(font_size = 11) %>%
row_spec(0, color = "grey10", background = "#F4F5F6") %>%
scroll_box(height = "300px")
z [m] | qc [MPa] | fs [MPa] | u2 [MPa] | ID | Location ID | Normalised ENTRHU [-] | Normalised hammer energy [-] | Diameter [m] | Bottom wall thickness [mm] | Pile penetration [m] |
---|---|---|---|---|---|---|---|---|---|---|
3.0 | 8.859 | 0.071 | 0.041 | CG__3_0 | CG | 0.120 | 0.160 | 2.48 | 50 | 33 |
3.5 | 12.484 | 0.111 | 0.041 | CG__3_5 | CG | 0.122 | 0.162 | 2.48 | 50 | 33 |
4.0 | 26.119 | 0.214 | 0.052 | CG__4_0 | CG | 0.124 | 0.165 | 2.48 | 50 | 33 |
4.5 | 31.922 | 0.298 | 0.066 | CG__4_5 | CG | 0.118 | 0.157 | 2.48 | 50 | 33 |
5.0 | 31.822 | 0.292 | 0.079 | CG__5_0 | CG | 0.112 | 0.149 | 2.48 | 50 | 33 |
5.5 | 29.064 | 0.268 | 0.090 | CG__5_5 | CG | 0.117 | 0.155 | 2.48 | 50 | 33 |
6.0 | 25.606 | 0.216 | 0.078 | CG__6_0 | CG | 0.121 | 0.162 | 2.48 | 50 | 33 |
6.5 | 28.187 | 0.251 | 0.062 | CG__6_5 | CG | 0.124 | 0.165 | 2.48 | 50 | 33 |
7.0 | 22.891 | 0.232 | 0.078 | CG__7_0 | CG | 0.126 | 0.168 | 2.48 | 50 | 33 |
7.5 | 22.283 | 0.199 | 0.090 | CG__7_5 | CG | 0.137 | 0.183 | 2.48 | 50 | 33 |
8.0 | 25.220 | 0.240 | 0.099 | CG__8_0 | CG | 0.148 | 0.198 | 2.48 | 50 | 33 |
8.5 | 24.819 | 0.244 | 0.107 | CG__8_5 | CG | 0.174 | 0.232 | 2.48 | 50 | 33 |
9.0 | 25.353 | 0.235 | 0.109 | CG__9_0 | CG | 0.200 | 0.267 | 2.48 | 50 | 33 |
9.5 | 29.594 | 0.261 | 0.101 | CG__9_5 | CG | 0.233 | 0.311 | 2.48 | 50 | 33 |
10.0 | 33.834 | 0.287 | 0.094 | CG__10_0 | CG | 0.267 | 0.356 | 2.48 | 50 | 33 |
10.5 | 27.980 | 0.143 | 0.075 | CG__10_5 | CG | 0.295 | 0.393 | 2.48 | 50 | 33 |
11.0 | 25.273 | 0.217 | 0.121 | CG__11_0 | CG | 0.323 | 0.431 | 2.48 | 50 | 33 |
11.5 | 14.002 | 0.148 | 0.132 | CG__11_5 | CG | 0.322 | 0.430 | 2.48 | 50 | 33 |
12.0 | 15.830 | 0.118 | 0.126 | CG__12_0 | CG | 0.322 | 0.429 | 2.48 | 50 | 33 |
12.5 | 11.260 | 0.110 | 0.143 | CG__12_5 | CG | 0.318 | 0.424 | 2.48 | 50 | 33 |
13.0 | 9.934 | 0.119 | 0.097 | CG__13_0 | CG | 0.314 | 0.419 | 2.48 | 50 | 33 |
13.5 | 18.624 | 0.144 | 0.126 | CG__13_5 | CG | 0.310 | 0.413 | 2.48 | 50 | 33 |
14.0 | 13.182 | 0.109 | 0.136 | CG__14_0 | CG | 0.306 | 0.408 | 2.48 | 50 | 33 |
14.5 | 10.605 | 0.092 | 0.126 | CG__14_5 | CG | 0.301 | 0.402 | 2.48 | 50 | 33 |
15.0 | 8.276 | 0.083 | 0.092 | CG__15_0 | CG | 0.297 | 0.396 | 2.48 | 50 | 33 |
15.5 | 14.220 | 0.140 | 0.132 | CG__15_5 | CG | 0.334 | 0.445 | 2.48 | 50 | 33 |
16.0 | 21.716 | 0.156 | 0.116 | CG__16_0 | CG | 0.371 | 0.494 | 2.48 | 50 | 33 |
16.5 | 19.388 | 0.134 | 0.129 | CG__16_5 | CG | 0.394 | 0.526 | 2.48 | 50 | 33 |
17.0 | 16.566 | 0.136 | 0.155 | CG__17_0 | CG | 0.418 | 0.557 | 2.48 | 50 | 33 |
17.5 | 22.589 | 0.174 | 0.172 | CG__17_5 | CG | 0.454 | 0.606 | 2.48 | 50 | 33 |
18.0 | 31.932 | 0.247 | 0.007 | CG__18_0 | CG | 0.491 | 0.654 | 2.48 | 50 | 33 |
18.5 | 50.331 | 0.298 | 0.192 | CG__18_5 | CG | 0.507 | 0.676 | 2.48 | 50 | 33 |
19.0 | 35.054 | 0.305 | 0.161 | CG__19_0 | CG | 0.524 | 0.698 | 2.48 | 50 | 33 |
19.5 | 38.511 | 0.366 | 0.179 | CG__19_5 | CG | 0.525 | 0.700 | 2.48 | 50 | 33 |
20.0 | 41.968 | 0.426 | 0.197 | CG__20_0 | CG | 0.526 | 0.702 | 2.48 | 50 | 33 |
20.5 | 43.108 | 0.460 | 0.196 | CG__20_5 | CG | 0.534 | 0.712 | 2.48 | 50 | 33 |
21.0 | 44.592 | 0.520 | 0.161 | CG__21_0 | CG | 0.541 | 0.722 | 2.48 | 50 | 33 |
21.5 | 47.682 | 0.567 | 0.155 | CG__21_5 | CG | 0.558 | 0.744 | 2.48 | 50 | 33 |
22.0 | 36.740 | 0.394 | -0.059 | CG__22_0 | CG | 0.574 | 0.766 | 2.48 | 50 | 33 |
22.5 | 30.662 | 0.268 | -0.259 | CG__22_5 | CG | 0.590 | 0.787 | 2.48 | 50 | 33 |
23.0 | 29.587 | 0.362 | -0.180 | CG__23_0 | CG | 0.606 | 0.807 | 2.48 | 50 | 33 |
23.5 | 33.710 | 0.410 | 0.222 | CG__23_5 | CG | 0.608 | 0.810 | 2.48 | 50 | 33 |
24.0 | 40.111 | 0.503 | 0.287 | CG__24_0 | CG | 0.610 | 0.813 | 2.48 | 50 | 33 |
24.5 | 40.079 | 0.511 | 0.291 | CG__24_5 | CG | 0.612 | 0.816 | 2.48 | 50 | 33 |
25.0 | 32.575 | 0.505 | 0.285 | CG__25_0 | CG | 0.614 | 0.819 | 2.48 | 50 | 33 |
25.5 | 25.071 | 0.499 | 0.279 | CG__25_5 | CG | 0.617 | 0.823 | 2.48 | 50 | 33 |
26.0 | 17.567 | 0.493 | 0.273 | CG__26_0 | CG | 0.619 | 0.826 | 2.48 | 50 | 33 |
26.5 | 23.495 | 0.550 | 0.272 | CG__26_5 | CG | 0.616 | 0.821 | 2.48 | 50 | 33 |
27.0 | 31.133 | 0.600 | 0.277 | CG__27_0 | CG | 0.612 | 0.816 | 2.48 | 50 | 33 |
27.5 | 33.581 | 0.524 | 0.282 | CG__27_5 | CG | 0.604 | 0.805 | 2.48 | 50 | 33 |
28.0 | 29.700 | 0.528 | 0.287 | CG__28_0 | CG | 0.596 | 0.794 | 2.48 | 50 | 33 |
28.5 | 30.296 | 0.590 | 0.292 | CG__28_5 | CG | 0.594 | 0.792 | 2.48 | 50 | 33 |
29.0 | 29.597 | 0.565 | 0.297 | CG__29_0 | CG | 0.593 | 0.791 | 2.48 | 50 | 33 |
29.5 | 32.513 | 0.582 | 0.302 | CG__29_5 | CG | 0.592 | 0.790 | 2.48 | 50 | 33 |
30.0 | 35.430 | 0.600 | 0.308 | CG__30_0 | CG | 0.591 | 0.788 | 2.48 | 50 | 33 |
30.5 | 48.335 | 0.804 | 0.313 | CG__30_5 | CG | 0.592 | 0.790 | 2.48 | 50 | 33 |
31.0 | 30.961 | 0.550 | 0.318 | CG__31_0 | CG | 0.593 | 0.791 | 2.48 | 50 | 33 |
31.5 | 29.890 | 0.543 | 0.323 | CG__31_5 | CG | 0.595 | 0.794 | 2.48 | 50 | 33 |
32.0 | 22.136 | 0.416 | 0.328 | CG__32_0 | CG | 0.598 | 0.797 | 2.48 | 50 | 33 |
4.0 | 26.119 | 0.214 | 0.052 | CH__4_0 | CH | 0.126 | 0.168 | 2.48 | 50 | 33 |
4.5 | 31.922 | 0.298 | 0.066 | CH__4_5 | CH | 0.122 | 0.162 | 2.48 | 50 | 33 |
5.0 | 31.822 | 0.292 | 0.079 | CH__5_0 | CH | 0.117 | 0.156 | 2.48 | 50 | 33 |
5.5 | 29.064 | 0.268 | 0.090 | CH__5_5 | CH | 0.117 | 0.156 | 2.48 | 50 | 33 |
6.0 | 25.606 | 0.216 | 0.078 | CH__6_0 | CH | 0.117 | 0.157 | 2.48 | 50 | 33 |
6.5 | 28.187 | 0.251 | 0.062 | CH__6_5 | CH | 0.140 | 0.186 | 2.48 | 50 | 33 |
7.0 | 22.891 | 0.232 | 0.078 | CH__7_0 | CH | 0.162 | 0.216 | 2.48 | 50 | 33 |
7.5 | 22.283 | 0.199 | 0.090 | CH__7_5 | CH | 0.175 | 0.233 | 2.48 | 50 | 33 |
8.0 | 25.220 | 0.240 | 0.099 | CH__8_0 | CH | 0.188 | 0.251 | 2.48 | 50 | 33 |
8.5 | 24.819 | 0.244 | 0.107 | CH__8_5 | CH | 0.188 | 0.251 | 2.48 | 50 | 33 |
9.0 | 25.353 | 0.235 | 0.109 | CH__9_0 | CH | 0.189 | 0.252 | 2.48 | 50 | 33 |
9.5 | 29.594 | 0.261 | 0.101 | CH__9_5 | CH | 0.232 | 0.309 | 2.48 | 50 | 33 |
10.0 | 33.834 | 0.287 | 0.094 | CH__10_0 | CH | 0.275 | 0.367 | 2.48 | 50 | 33 |
10.5 | 27.980 | 0.143 | 0.075 | CH__10_5 | CH | 0.295 | 0.393 | 2.48 | 50 | 33 |
11.0 | 25.273 | 0.217 | 0.121 | CH__11_0 | CH | 0.314 | 0.419 | 2.48 | 50 | 33 |
11.5 | 14.002 | 0.148 | 0.132 | CH__11_5 | CH | 0.312 | 0.416 | 2.48 | 50 | 33 |
12.0 | 15.830 | 0.118 | 0.126 | CH__12_0 | CH | 0.310 | 0.413 | 2.48 | 50 | 33 |
12.5 | 11.260 | 0.110 | 0.143 | CH__12_5 | CH | 0.314 | 0.419 | 2.48 | 50 | 33 |
13.0 | 9.934 | 0.119 | 0.097 | CH__13_0 | CH | 0.318 | 0.424 | 2.48 | 50 | 33 |
13.5 | 18.624 | 0.144 | 0.126 | CH__13_5 | CH | 0.314 | 0.419 | 2.48 | 50 | 33 |
14.0 | 13.182 | 0.109 | 0.136 | CH__14_0 | CH | 0.311 | 0.414 | 2.48 | 50 | 33 |
14.5 | 10.605 | 0.092 | 0.126 | CH__14_5 | CH | 0.305 | 0.407 | 2.48 | 50 | 33 |
15.0 | 8.276 | 0.083 | 0.092 | CH__15_0 | CH | 0.300 | 0.400 | 2.48 | 50 | 33 |
15.5 | 14.220 | 0.140 | 0.132 | CH__15_5 | CH | 0.329 | 0.439 | 2.48 | 50 | 33 |
16.0 | 21.716 | 0.156 | 0.116 | CH__16_0 | CH | 0.359 | 0.478 | 2.48 | 50 | 33 |
16.5 | 19.388 | 0.134 | 0.129 | CH__16_5 | CH | 0.392 | 0.523 | 2.48 | 50 | 33 |
17.0 | 16.566 | 0.136 | 0.155 | CH__17_0 | CH | 0.426 | 0.568 | 2.48 | 50 | 33 |
17.5 | 22.589 | 0.174 | 0.172 | CH__17_5 | CH | 0.478 | 0.637 | 2.48 | 50 | 33 |
18.0 | 31.932 | 0.247 | 0.007 | CH__18_0 | CH | 0.529 | 0.706 | 2.48 | 50 | 33 |
18.5 | 50.331 | 0.298 | 0.192 | CH__18_5 | CH | 0.525 | 0.700 | 2.48 | 50 | 33 |
19.0 | 35.054 | 0.305 | 0.161 | CH__19_0 | CH | 0.521 | 0.695 | 2.48 | 50 | 33 |
19.5 | 38.511 | 0.366 | 0.179 | CH__19_5 | CH | 0.517 | 0.690 | 2.48 | 50 | 33 |
20.0 | 41.968 | 0.426 | 0.197 | CH__20_0 | CH | 0.513 | 0.684 | 2.48 | 50 | 33 |
20.5 | 43.108 | 0.460 | 0.196 | CH__20_5 | CH | 0.512 | 0.682 | 2.48 | 50 | 33 |
21.0 | 44.592 | 0.520 | 0.161 | CH__21_0 | CH | 0.510 | 0.680 | 2.48 | 50 | 33 |
21.5 | 47.682 | 0.567 | 0.155 | CH__21_5 | CH | 0.510 | 0.680 | 2.48 | 50 | 33 |
22.0 | 36.740 | 0.394 | -0.059 | CH__22_0 | CH | 0.510 | 0.680 | 2.48 | 50 | 33 |
22.5 | 30.662 | 0.268 | -0.259 | CH__22_5 | CH | 0.529 | 0.705 | 2.48 | 50 | 33 |
23.0 | 29.587 | 0.362 | -0.180 | CH__23_0 | CH | 0.548 | 0.731 | 2.48 | 50 | 33 |
23.5 | 33.710 | 0.410 | 0.222 | CH__23_5 | CH | 0.554 | 0.738 | 2.48 | 50 | 33 |
24.0 | 40.111 | 0.503 | 0.287 | CH__24_0 | CH | 0.559 | 0.746 | 2.48 | 50 | 33 |
24.5 | 40.079 | 0.511 | 0.291 | CH__24_5 | CH | 0.561 | 0.748 | 2.48 | 50 | 33 |
25.0 | 32.575 | 0.505 | 0.285 | CH__25_0 | CH | 0.563 | 0.751 | 2.48 | 50 | 33 |
25.5 | 25.071 | 0.499 | 0.279 | CH__25_5 | CH | 0.567 | 0.756 | 2.48 | 50 | 33 |
26.0 | 17.567 | 0.493 | 0.273 | CH__26_0 | CH | 0.571 | 0.761 | 2.48 | 50 | 33 |
26.5 | 23.495 | 0.550 | 0.272 | CH__26_5 | CH | 0.576 | 0.768 | 2.48 | 50 | 33 |
27.0 | 31.133 | 0.600 | 0.277 | CH__27_0 | CH | 0.581 | 0.775 | 2.48 | 50 | 33 |
27.5 | 33.581 | 0.524 | 0.282 | CH__27_5 | CH | 0.587 | 0.782 | 2.48 | 50 | 33 |
28.0 | 29.700 | 0.528 | 0.287 | CH__28_0 | CH | 0.592 | 0.789 | 2.48 | 50 | 33 |
28.5 | 30.296 | 0.590 | 0.292 | CH__28_5 | CH | 0.598 | 0.797 | 2.48 | 50 | 33 |
29.0 | 29.597 | 0.565 | 0.297 | CH__29_0 | CH | 0.603 | 0.804 | 2.48 | 50 | 33 |
29.5 | 32.513 | 0.582 | 0.302 | CH__29_5 | CH | 0.601 | 0.801 | 2.48 | 50 | 33 |
30.0 | 35.430 | 0.600 | 0.308 | CH__30_0 | CH | 0.599 | 0.798 | 2.48 | 50 | 33 |
30.5 | 48.335 | 0.804 | 0.313 | CH__30_5 | CH | 0.597 | 0.795 | 2.48 | 50 | 33 |
31.0 | 30.961 | 0.550 | 0.318 | CH__31_0 | CH | 0.594 | 0.792 | 2.48 | 50 | 33 |
31.5 | 29.890 | 0.543 | 0.323 | CH__31_5 | CH | 0.594 | 0.792 | 2.48 | 50 | 33 |
32.0 | 22.136 | 0.416 | 0.328 | CH__32_0 | CH | 0.594 | 0.792 | 2.48 | 50 | 33 |
32.5 | 62.235 | 0.873 | 0.333 | CH__32_5 | CH | 0.585 | 0.780 | 2.48 | 50 | 33 |
33.0 | 77.961 | 1.010 | 0.338 | CH__33_0 | CH | 0.577 | 0.769 | 2.48 | 50 | 33 |
5.0 | 31.822 | 0.292 | 0.079 | CI__5_0 | CI | 0.121 | 0.162 | 2.48 | 50 | 33 |
5.5 | 29.064 | 0.268 | 0.090 | CI__5_5 | CI | 0.122 | 0.163 | 2.48 | 50 | 33 |
6.0 | 25.606 | 0.216 | 0.078 | CI__6_0 | CI | 0.124 | 0.165 | 2.48 | 50 | 33 |
6.5 | 28.187 | 0.251 | 0.062 | CI__6_5 | CI | 0.122 | 0.162 | 2.48 | 50 | 33 |
7.0 | 22.891 | 0.232 | 0.078 | CI__7_0 | CI | 0.119 | 0.159 | 2.48 | 50 | 33 |
7.5 | 22.283 | 0.199 | 0.090 | CI__7_5 | CI | 0.116 | 0.155 | 2.48 | 50 | 33 |
8.0 | 25.220 | 0.240 | 0.099 | CI__8_0 | CI | 0.113 | 0.151 | 2.48 | 50 | 33 |
8.5 | 24.819 | 0.244 | 0.107 | CI__8_5 | CI | 0.146 | 0.195 | 2.48 | 50 | 33 |
9.0 | 25.353 | 0.235 | 0.109 | CI__9_0 | CI | 0.179 | 0.239 | 2.48 | 50 | 33 |
9.5 | 29.594 | 0.261 | 0.101 | CI__9_5 | CI | 0.190 | 0.254 | 2.48 | 50 | 33 |
10.0 | 33.834 | 0.287 | 0.094 | CI__10_0 | CI | 0.201 | 0.268 | 2.48 | 50 | 33 |
10.5 | 27.980 | 0.143 | 0.075 | CI__10_5 | CI | 0.244 | 0.325 | 2.48 | 50 | 33 |
11.0 | 25.273 | 0.217 | 0.121 | CI__11_0 | CI | 0.287 | 0.382 | 2.48 | 50 | 33 |
11.5 | 14.002 | 0.148 | 0.132 | CI__11_5 | CI | 0.288 | 0.384 | 2.48 | 50 | 33 |
12.0 | 15.830 | 0.118 | 0.126 | CI__12_0 | CI | 0.289 | 0.386 | 2.48 | 50 | 33 |
12.5 | 11.260 | 0.110 | 0.143 | CI__12_5 | CI | 0.289 | 0.385 | 2.48 | 50 | 33 |
13.0 | 9.934 | 0.119 | 0.097 | CI__13_0 | CI | 0.288 | 0.384 | 2.48 | 50 | 33 |
13.5 | 18.624 | 0.144 | 0.126 | CI__13_5 | CI | 0.290 | 0.387 | 2.48 | 50 | 33 |
14.0 | 13.182 | 0.109 | 0.136 | CI__14_0 | CI | 0.292 | 0.389 | 2.48 | 50 | 33 |
14.5 | 10.605 | 0.092 | 0.126 | CI__14_5 | CI | 0.298 | 0.398 | 2.48 | 50 | 33 |
15.0 | 8.276 | 0.083 | 0.092 | CI__15_0 | CI | 0.305 | 0.407 | 2.48 | 50 | 33 |
15.5 | 14.220 | 0.140 | 0.132 | CI__15_5 | CI | 0.342 | 0.456 | 2.48 | 50 | 33 |
16.0 | 21.716 | 0.156 | 0.116 | CI__16_0 | CI | 0.379 | 0.505 | 2.48 | 50 | 33 |
16.5 | 19.388 | 0.134 | 0.129 | CI__16_5 | CI | 0.401 | 0.534 | 2.48 | 50 | 33 |
17.0 | 16.566 | 0.136 | 0.155 | CI__17_0 | CI | 0.422 | 0.563 | 2.48 | 50 | 33 |
17.5 | 22.589 | 0.174 | 0.172 | CI__17_5 | CI | 0.434 | 0.579 | 2.48 | 50 | 33 |
18.0 | 31.932 | 0.247 | 0.007 | CI__18_0 | CI | 0.446 | 0.595 | 2.48 | 50 | 33 |
18.5 | 50.331 | 0.298 | 0.192 | CI__18_5 | CI | 0.453 | 0.605 | 2.48 | 50 | 33 |
19.0 | 35.054 | 0.305 | 0.161 | CI__19_0 | CI | 0.461 | 0.614 | 2.48 | 50 | 33 |
19.5 | 38.511 | 0.366 | 0.179 | CI__19_5 | CI | 0.490 | 0.654 | 2.48 | 50 | 33 |
20.0 | 41.968 | 0.426 | 0.197 | CI__20_0 | CI | 0.520 | 0.693 | 2.48 | 50 | 33 |
20.5 | 43.108 | 0.460 | 0.196 | CI__20_5 | CI | 0.518 | 0.690 | 2.48 | 50 | 33 |
21.0 | 44.592 | 0.520 | 0.161 | CI__21_0 | CI | 0.515 | 0.687 | 2.48 | 50 | 33 |
21.5 | 47.682 | 0.567 | 0.155 | CI__21_5 | CI | 0.514 | 0.686 | 2.48 | 50 | 33 |
22.0 | 36.740 | 0.394 | -0.059 | CI__22_0 | CI | 0.514 | 0.685 | 2.48 | 50 | 33 |
22.5 | 30.662 | 0.268 | -0.259 | CI__22_5 | CI | 0.509 | 0.679 | 2.48 | 50 | 33 |
23.0 | 29.587 | 0.362 | -0.180 | CI__23_0 | CI | 0.505 | 0.673 | 2.48 | 50 | 33 |
23.5 | 33.710 | 0.410 | 0.222 | CI__23_5 | CI | 0.514 | 0.685 | 2.48 | 50 | 33 |
24.0 | 40.111 | 0.503 | 0.287 | CI__24_0 | CI | 0.522 | 0.697 | 2.48 | 50 | 33 |
24.5 | 40.079 | 0.511 | 0.291 | CI__24_5 | CI | 0.549 | 0.732 | 2.48 | 50 | 33 |
25.0 | 32.575 | 0.505 | 0.285 | CI__25_0 | CI | 0.576 | 0.768 | 2.48 | 50 | 33 |
25.5 | 25.071 | 0.499 | 0.279 | CI__25_5 | CI | 0.574 | 0.765 | 2.48 | 50 | 33 |
26.0 | 17.567 | 0.493 | 0.273 | CI__26_0 | CI | 0.571 | 0.762 | 2.48 | 50 | 33 |
26.5 | 23.495 | 0.550 | 0.272 | CI__26_5 | CI | 0.570 | 0.760 | 2.48 | 50 | 33 |
27.0 | 31.133 | 0.600 | 0.277 | CI__27_0 | CI | 0.568 | 0.757 | 2.48 | 50 | 33 |
27.5 | 33.581 | 0.524 | 0.282 | CI__27_5 | CI | 0.581 | 0.775 | 2.48 | 50 | 33 |
28.0 | 29.700 | 0.528 | 0.287 | CI__28_0 | CI | 0.594 | 0.792 | 2.48 | 50 | 33 |
28.5 | 30.296 | 0.590 | 0.292 | CI__28_5 | CI | 0.596 | 0.794 | 2.48 | 50 | 33 |
29.0 | 29.597 | 0.565 | 0.297 | CI__29_0 | CI | 0.597 | 0.796 | 2.48 | 50 | 33 |
29.5 | 32.513 | 0.582 | 0.302 | CI__29_5 | CI | 0.596 | 0.795 | 2.48 | 50 | 33 |
30.0 | 35.430 | 0.600 | 0.308 | CI__30_0 | CI | 0.596 | 0.794 | 2.48 | 50 | 33 |
30.5 | 48.335 | 0.804 | 0.313 | CI__30_5 | CI | 0.608 | 0.811 | 2.48 | 50 | 33 |
31.0 | 30.961 | 0.550 | 0.318 | CI__31_0 | CI | 0.621 | 0.828 | 2.48 | 50 | 33 |
31.5 | 29.890 | 0.543 | 0.323 | CI__31_5 | CI | 0.619 | 0.825 | 2.48 | 50 | 33 |
32.0 | 22.136 | 0.416 | 0.328 | CI__32_0 | CI | 0.618 | 0.823 | 2.48 | 50 | 33 |
32.5 | 62.235 | 0.873 | 0.333 | CI__32_5 | CI | 0.615 | 0.820 | 2.48 | 50 | 33 |
33.0 | 77.961 | 1.010 | 0.338 | CI__33_0 | CI | 0.613 | 0.817 | 2.48 | 50 | 33 |
The above tables show the first 100 rows of the training
and validation
datasets. The two datasets have the same
structure. The parameters included in the data can be divided into four
categories:
z [m]
- depth;qc [MPa]
- cone tip resistance;fs [MPa
- cone sleeve friction;u2 [MPa]
- pore pressure;Diameter [m]
- pile outer diameter;Bottom wall thickness [mm]
- wall thickness at the
bottom of the pile;Pile penetration [m]
- final penetration of the pile
below mudline;Normalised ENTRHU [-]
- energy transmitted to the pile
(normalised to be between 0 and 1);Normalised hammer energy [-]
- energy provided by the
hammer (normalised to be between 0 and 1);Blowcount [Blows/m]
- number of blows required for an
additional meter of pile penetration;Number of blows
- total number of blows to reach the
selected depth;Location ID
- anonymized location ID;ID
- a unique ID combining the location name and
depth.To facilitate the model-building process, the data have been
pre-processed to a regular grid with a vertical spacing of 0.5m (notice
the values of z [m]
). In overall there are 4610 and 1008
data points in the training
and validation
datasets, respectively.
Note that for the validation
dataset,
Blowcount [Blows/m]
and Number of blows
are
not provided, as these are the parameters to be predicted by the model
(i.e. outcome). The remaining 11 variables can potentially be used as
input to build the predictive model (i.e. features).
In addition, normalised data for CPT registrations, for both
training
and validation
, are also provided. We
load and view these data here but, for now, we are not really going to
detail them.
<- read_csv("F:/isfog2020/training_data_withnormalised.csv")
training_no <- read_csv("F:/isfog2020/validation_data_withnormalised.csv") validation_no
kable(top_n(training_no, 100),
digits = 3,
caption = "Normalised training data.",
align = "r") %>%
kable_styling(font_size = 11) %>%
row_spec(0, color = "grey10", background = "#F4F5F6") %>%
scroll_box(height = "300px")
z [m] | qc [MPa] | fs [MPa] | u2 [MPa] | ID | Location ID | Blowcount [Blows/m] | Normalised ENTRHU [-] | Normalised hammer energy [-] | Number of blows | Diameter [m] | Bottom wall thickness [mm] | Pile penetration [m] | area ratio [-] | Push | Total unit weight [kN/m3] | Layer no | Vertical total stress [kPa] | Water pressure [kPa] | Vertical effective stress [kPa] | qt [MPa] | Delta u2 [MPa] | Rf [%] | Bq [-] | Qt [-] | Fr [%] | qnet [MPa] | Ic [-] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.5 | 1.641 | 0.024 | 0.080 | CD__11_5 | CD | 28 | 0.228 | 0.304 | 224.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 1.661 | -0.038 | 1.433 | -0.026 | 14.338 | 1.650 | 1.443 | 2.724 |
25.0 | 6.689 | 0.296 | 0.550 | CD__25_0 | CD | 72 | 0.534 | 0.711 | 1102.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 475.0 | 256.250 | 218.750 | 6.826 | 0.294 | 4.333 | 0.046 | 29.034 | 4.657 | 6.351 | 2.756 |
25.5 | 4.287 | 0.121 | 0.665 | CD__25_5 | CD | 64 | 0.533 | 0.711 | 1131.5 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 484.5 | 261.375 | 223.125 | 4.454 | 0.404 | 2.712 | 0.102 | 17.789 | 3.043 | 3.969 | 2.798 |
26.0 | 4.829 | 0.160 | 1.263 | CD__26_0 | CD | 56 | 0.533 | 0.710 | 1161.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 494.0 | 266.500 | 227.500 | 5.145 | 0.996 | 3.114 | 0.214 | 20.444 | 3.444 | 4.651 | 2.784 |
26.5 | 5.456 | 0.128 | 1.912 | CD__26_5 | CD | 56 | 0.541 | 0.722 | 1190.5 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 503.5 | 271.625 | 231.875 | 5.934 | 1.640 | 2.162 | 0.302 | 23.418 | 2.363 | 5.430 | 2.627 |
27.0 | 5.487 | 0.105 | 0.113 | CD__27_0 | CD | 56 | 0.550 | 0.733 | 1220.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 513.0 | 276.750 | 236.250 | 5.515 | -0.164 | 1.911 | -0.033 | 21.172 | 2.107 | 5.002 | 2.633 |
10.5 | 2.046 | 0.060 | 0.133 | CA__10_5 | CA | 34 | 0.170 | 0.226 | 196.5 | 2.48 | 50 | 27 | 0.75 | 1 | 19 | 1 | 199.5 | 107.625 | 91.875 | 2.079 | 0.026 | 2.881 | 0.014 | 20.463 | 3.186 | 1.880 | 2.764 |
11.5 | 2.311 | 0.057 | 0.219 | CA__11_5 | CA | 32 | 0.173 | 0.230 | 230.0 | 2.48 | 50 | 27 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 2.366 | 0.102 | 2.396 | 0.047 | 21.342 | 2.640 | 2.148 | 2.698 |
27.5 | 4.705 | 0.126 | 0.179 | DW__27_5 | DW | 100 | 0.386 | 0.514 | 1934.0 | 2.48 | 50 | 32 | 0.75 | 1 | 19 | 1 | 522.5 | 281.875 | 240.625 | 4.750 | -0.102 | 2.652 | -0.024 | 17.567 | 2.980 | 4.227 | 2.797 |
10.5 | 3.111 | 0.114 | 0.262 | AU__10_5 | AU | 70 | 0.229 | 0.310 | 253.0 | 2.48 | 55 | 32 | 0.75 | 1 | 19 | 1 | 199.5 | 107.625 | 91.875 | 3.177 | 0.154 | 3.595 | 0.052 | 32.403 | 3.836 | 2.977 | 2.666 |
13.5 | 3.585 | 0.131 | -0.140 | EC__13_5 | EC | 24 | 0.328 | 0.438 | 163.0 | 2.48 | 70 | 27 | 0.75 | 1 | 19 | 1 | 256.5 | 138.375 | 118.125 | 3.550 | -0.278 | 3.695 | -0.084 | 27.886 | 3.983 | 3.294 | 2.720 |
15.0 | 2.971 | 0.062 | -0.284 | AR__15_0 | AR | 60 | 0.466 | 0.621 | 229.0 | 2.48 | 55 | 29 | 0.75 | 1 | 19 | 1 | 285.0 | 153.750 | 131.250 | 2.900 | -0.438 | 2.153 | -0.167 | 19.924 | 2.388 | 2.615 | 2.690 |
25.5 | 4.827 | 0.187 | 0.269 | CM__25_5 | CM | 72 | 0.533 | 0.711 | 1277.0 | 2.48 | 50 | 30 | 0.75 | 1 | 19 | 1 | 484.5 | 261.375 | 223.125 | 4.895 | 0.008 | 3.814 | 0.002 | 19.766 | 4.233 | 4.410 | 2.853 |
12.5 | 2.705 | 0.115 | -0.082 | CY__12_5 | CY | 26 | 0.233 | 0.310 | 170.0 | 2.48 | 70 | 25 | 0.75 | 1 | 19 | 1 | 237.5 | 128.125 | 109.375 | 2.685 | -0.210 | 4.298 | -0.086 | 22.377 | 4.715 | 2.448 | 2.842 |
11.5 | 3.228 | 0.098 | 0.126 | EE__11_5 | EE | 52 | 0.242 | 0.323 | 387.5 | 2.48 | 50 | 30 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 3.259 | 0.008 | 3.007 | 0.003 | 30.216 | 3.223 | 3.041 | 2.635 |
11.0 | 2.627 | 0.074 | 0.126 | DK__11_0 | DK | 20 | 0.237 | 0.316 | 121.0 | 2.48 | 50 | 31 | 0.75 | 1 | 19 | 1 | 209.0 | 112.750 | 96.250 | 2.658 | 0.013 | 2.795 | 0.005 | 25.448 | 3.033 | 2.449 | 2.677 |
1.0 | 0.347 | 0.016 | 0.025 | AL__1_0 | AL | NA | NA | NA | NA | 2.48 | 55 | 30 | 0.75 | 1 | 19 | 1 | 19.0 | 10.250 | 8.750 | 0.353 | 0.015 | 4.490 | 0.044 | 38.200 | 4.745 | 0.334 | 2.750 |
38.5 | 9.247 | 0.236 | -0.208 | BA__38_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 731.5 | 394.625 | 336.875 | 9.195 | -0.602 | 2.563 | -0.071 | 25.124 | 2.785 | 8.464 | 2.656 |
41.0 | 6.616 | 0.212 | -0.119 | BA__41_0 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 779.0 | 420.250 | 358.750 | 6.586 | -0.539 | 3.222 | -0.093 | 16.187 | 3.654 | 5.807 | 2.879 |
41.5 | 5.836 | 0.231 | 0.353 | BA__41_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 788.5 | 425.375 | 363.125 | 5.925 | -0.072 | 3.894 | -0.014 | 14.144 | 4.492 | 5.136 | 2.981 |
42.0 | 5.571 | 0.215 | 1.179 | BA__42_0 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 798.0 | 430.500 | 367.500 | 5.865 | 0.749 | 3.664 | 0.148 | 13.789 | 4.241 | 5.067 | 2.974 |
42.5 | 5.012 | 0.201 | 1.243 | BA__42_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 807.5 | 435.625 | 371.875 | 5.322 | 0.808 | 3.784 | 0.179 | 12.141 | 4.461 | 4.515 | 3.031 |
43.0 | 3.789 | 0.151 | 0.760 | BA__43_0 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 817.0 | 440.750 | 376.250 | 3.979 | 0.319 | 3.787 | 0.101 | 8.404 | 4.766 | 3.162 | 3.175 |
43.5 | 3.956 | 0.176 | 1.057 | BA__43_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 826.5 | 445.875 | 380.625 | 4.221 | 0.611 | 4.158 | 0.180 | 8.917 | 5.171 | 3.394 | 3.176 |
44.0 | 6.573 | 0.196 | 1.105 | BA__44_0 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 836.0 | 451.000 | 385.000 | 6.850 | 0.654 | 2.869 | 0.109 | 15.620 | 3.268 | 6.014 | 2.862 |
45.5 | 7.516 | 0.169 | -0.260 | BA__45_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 864.5 | 466.375 | 398.125 | 7.451 | -0.727 | 2.267 | -0.110 | 16.544 | 2.564 | 6.586 | 2.779 |
46.5 | 4.458 | 0.179 | -0.241 | BA__46_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 883.5 | 476.625 | 406.875 | 4.398 | -0.718 | 4.077 | -0.204 | 8.637 | 5.102 | 3.514 | 3.184 |
47.0 | 4.204 | 0.169 | 0.021 | BA__47_0 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 893.0 | 481.750 | 411.250 | 4.209 | -0.461 | 4.011 | -0.139 | 8.063 | 5.091 | 3.316 | 3.207 |
47.5 | 4.129 | 0.106 | 0.374 | BA__47_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 902.5 | 486.875 | 415.625 | 4.222 | -0.113 | 2.519 | -0.034 | 7.988 | 3.204 | 3.320 | 3.094 |
48.0 | 6.130 | 0.196 | -0.424 | BA__48_0 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 912.0 | 492.000 | 420.000 | 6.024 | -0.916 | 3.254 | -0.179 | 12.171 | 3.834 | 5.112 | 2.990 |
48.5 | 3.613 | 0.098 | 1.463 | BA__48_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 921.5 | 497.125 | 424.375 | 3.979 | 0.966 | 2.470 | 0.316 | 7.205 | 3.215 | 3.058 | 3.132 |
49.5 | 6.013 | 0.172 | -0.499 | BA__49_5 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 940.5 | 507.375 | 433.125 | 5.888 | -1.007 | 2.920 | -0.203 | 11.423 | 3.474 | 4.947 | 2.987 |
50.0 | 4.809 | 0.111 | 0.340 | BA__50_0 | BA | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 950.0 | 512.500 | 437.500 | 4.894 | -0.172 | 2.266 | -0.044 | 9.015 | 2.812 | 3.944 | 3.018 |
14.5 | 3.169 | 0.129 | 0.127 | DB__14_5 | DB | 44 | 0.237 | 0.315 | 209.0 | 2.48 | 50 | 26 | 0.75 | 1 | 19 | 1 | 275.5 | 148.625 | 126.875 | 3.201 | -0.021 | 4.024 | -0.007 | 23.058 | 4.403 | 2.925 | 2.812 |
11.5 | 1.641 | 0.024 | 0.080 | CE__11_5 | CE | 58 | 0.217 | 0.289 | 352.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 1.661 | -0.038 | 1.433 | -0.026 | 14.338 | 1.650 | 1.443 | 2.724 |
25.0 | 6.689 | 0.296 | 0.550 | CE__25_0 | CE | 72 | 0.576 | 0.768 | 1383.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 475.0 | 256.250 | 218.750 | 6.826 | 0.294 | 4.333 | 0.046 | 29.034 | 4.657 | 6.351 | 2.756 |
25.5 | 4.287 | 0.121 | 0.665 | CE__25_5 | CE | 76 | 0.569 | 0.759 | 1421.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 484.5 | 261.375 | 223.125 | 4.454 | 0.404 | 2.712 | 0.102 | 17.789 | 3.043 | 3.969 | 2.798 |
26.0 | 4.829 | 0.160 | 1.263 | CE__26_0 | CE | 80 | 0.562 | 0.750 | 1459.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 494.0 | 266.500 | 227.500 | 5.145 | 0.996 | 3.114 | 0.214 | 20.444 | 3.444 | 4.651 | 2.784 |
26.5 | 5.456 | 0.128 | 1.912 | CE__26_5 | CE | 78 | 0.565 | 0.753 | 1495.5 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 503.5 | 271.625 | 231.875 | 5.934 | 1.640 | 2.162 | 0.302 | 23.418 | 2.363 | 5.430 | 2.627 |
27.0 | 5.487 | 0.105 | 0.113 | CE__27_0 | CE | 76 | 0.567 | 0.756 | 1532.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 513.0 | 276.750 | 236.250 | 5.515 | -0.164 | 1.911 | -0.033 | 21.172 | 2.107 | 5.002 | 2.633 |
10.5 | 2.046 | 0.060 | 0.133 | CB__10_5 | CB | 32 | 0.159 | 0.212 | 142.5 | 2.48 | 50 | 27 | 0.75 | 1 | 19 | 1 | 199.5 | 107.625 | 91.875 | 2.079 | 0.026 | 2.881 | 0.014 | 20.463 | 3.186 | 1.880 | 2.764 |
11.5 | 2.311 | 0.057 | 0.219 | CB__11_5 | CB | 30 | 0.142 | 0.189 | 169.0 | 2.48 | 50 | 27 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 2.366 | 0.102 | 2.396 | 0.047 | 21.342 | 2.640 | 2.148 | 2.698 |
27.5 | 4.705 | 0.126 | 0.179 | DX__27_5 | DX | 90 | 0.487 | 0.649 | 1904.5 | 2.48 | 50 | 32 | 0.75 | 1 | 19 | 1 | 522.5 | 281.875 | 240.625 | 4.750 | -0.102 | 2.652 | -0.024 | 17.567 | 2.980 | 4.227 | 2.797 |
10.5 | 3.111 | 0.114 | 0.262 | AV__10_5 | AV | 28 | 0.317 | 0.422 | 295.5 | 2.48 | 55 | 32 | 0.75 | 1 | 19 | 1 | 199.5 | 107.625 | 91.875 | 3.177 | 0.154 | 3.595 | 0.052 | 32.403 | 3.836 | 2.977 | 2.666 |
15.0 | 2.971 | 0.062 | -0.284 | AS__15_0 | AS | 84 | 0.476 | 0.634 | 366.0 | 2.48 | 55 | 29 | 0.75 | 1 | 19 | 1 | 285.0 | 153.750 | 131.250 | 2.900 | -0.438 | 2.153 | -0.167 | 19.924 | 2.388 | 2.615 | 2.690 |
25.5 | 4.827 | 0.187 | 0.269 | CN__25_5 | CN | 88 | 0.491 | 0.655 | 1569.0 | 2.48 | 50 | 30 | 0.75 | 1 | 19 | 1 | 484.5 | 261.375 | 223.125 | 4.895 | 0.008 | 3.814 | 0.002 | 19.766 | 4.233 | 4.410 | 2.853 |
12.5 | 2.705 | 0.115 | -0.082 | CZ__12_5 | CZ | 38 | 0.181 | 0.242 | 175.5 | 2.48 | 70 | 25 | 0.75 | 1 | 19 | 1 | 237.5 | 128.125 | 109.375 | 2.685 | -0.210 | 4.298 | -0.086 | 22.377 | 4.715 | 2.448 | 2.842 |
11.5 | 3.228 | 0.098 | 0.126 | EF__11_5 | EF | 82 | 0.254 | 0.338 | 498.0 | 2.48 | 50 | 30 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 3.259 | 0.008 | 3.007 | 0.003 | 30.216 | 3.223 | 3.041 | 2.635 |
11.0 | 2.627 | 0.074 | 0.126 | DL__11_0 | DL | 24 | 0.223 | 0.297 | 259.0 | 2.48 | 50 | 31 | 0.75 | 1 | 19 | 1 | 209.0 | 112.750 | 96.250 | 2.658 | 0.013 | 2.795 | 0.005 | 25.448 | 3.033 | 2.449 | 2.677 |
1.0 | 0.347 | 0.016 | 0.025 | AM__1_0 | AM | NA | NA | NA | NA | 2.48 | 55 | 30 | 0.75 | 1 | 19 | 1 | 19.0 | 10.250 | 8.750 | 0.353 | 0.015 | 4.490 | 0.044 | 38.200 | 4.745 | 0.334 | 2.750 |
38.5 | 9.247 | 0.236 | -0.208 | BB__38_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 731.5 | 394.625 | 336.875 | 9.195 | -0.602 | 2.563 | -0.071 | 25.124 | 2.785 | 8.464 | 2.656 |
41.0 | 6.616 | 0.212 | -0.119 | BB__41_0 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 779.0 | 420.250 | 358.750 | 6.586 | -0.539 | 3.222 | -0.093 | 16.187 | 3.654 | 5.807 | 2.879 |
41.5 | 5.836 | 0.231 | 0.353 | BB__41_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 788.5 | 425.375 | 363.125 | 5.925 | -0.072 | 3.894 | -0.014 | 14.144 | 4.492 | 5.136 | 2.981 |
42.0 | 5.571 | 0.215 | 1.179 | BB__42_0 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 798.0 | 430.500 | 367.500 | 5.865 | 0.749 | 3.664 | 0.148 | 13.789 | 4.241 | 5.067 | 2.974 |
42.5 | 5.012 | 0.201 | 1.243 | BB__42_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 807.5 | 435.625 | 371.875 | 5.322 | 0.808 | 3.784 | 0.179 | 12.141 | 4.461 | 4.515 | 3.031 |
43.0 | 3.789 | 0.151 | 0.760 | BB__43_0 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 817.0 | 440.750 | 376.250 | 3.979 | 0.319 | 3.787 | 0.101 | 8.404 | 4.766 | 3.162 | 3.175 |
43.5 | 3.956 | 0.176 | 1.057 | BB__43_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 826.5 | 445.875 | 380.625 | 4.221 | 0.611 | 4.158 | 0.180 | 8.917 | 5.171 | 3.394 | 3.176 |
44.0 | 6.573 | 0.196 | 1.105 | BB__44_0 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 836.0 | 451.000 | 385.000 | 6.850 | 0.654 | 2.869 | 0.109 | 15.620 | 3.268 | 6.014 | 2.862 |
45.5 | 7.516 | 0.169 | -0.260 | BB__45_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 864.5 | 466.375 | 398.125 | 7.451 | -0.727 | 2.267 | -0.110 | 16.544 | 2.564 | 6.586 | 2.779 |
46.5 | 4.458 | 0.179 | -0.241 | BB__46_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 883.5 | 476.625 | 406.875 | 4.398 | -0.718 | 4.077 | -0.204 | 8.637 | 5.102 | 3.514 | 3.184 |
47.0 | 4.204 | 0.169 | 0.021 | BB__47_0 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 893.0 | 481.750 | 411.250 | 4.209 | -0.461 | 4.011 | -0.139 | 8.063 | 5.091 | 3.316 | 3.207 |
47.5 | 4.129 | 0.106 | 0.374 | BB__47_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 902.5 | 486.875 | 415.625 | 4.222 | -0.113 | 2.519 | -0.034 | 7.988 | 3.204 | 3.320 | 3.094 |
48.0 | 6.130 | 0.196 | -0.424 | BB__48_0 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 912.0 | 492.000 | 420.000 | 6.024 | -0.916 | 3.254 | -0.179 | 12.171 | 3.834 | 5.112 | 2.990 |
48.5 | 3.613 | 0.098 | 1.463 | BB__48_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 921.5 | 497.125 | 424.375 | 3.979 | 0.966 | 2.470 | 0.316 | 7.205 | 3.215 | 3.058 | 3.132 |
49.5 | 6.013 | 0.172 | -0.499 | BB__49_5 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 940.5 | 507.375 | 433.125 | 5.888 | -1.007 | 2.920 | -0.203 | 11.423 | 3.474 | 4.947 | 2.987 |
50.0 | 4.809 | 0.111 | 0.340 | BB__50_0 | BB | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 950.0 | 512.500 | 437.500 | 4.894 | -0.172 | 2.266 | -0.044 | 9.015 | 2.812 | 3.944 | 3.018 |
14.5 | 3.169 | 0.129 | 0.127 | DC__14_5 | DC | 62 | 0.319 | 0.425 | 486.0 | 2.48 | 50 | 26 | 0.75 | 1 | 19 | 1 | 275.5 | 148.625 | 126.875 | 3.201 | -0.021 | 4.024 | -0.007 | 23.058 | 4.403 | 2.925 | 2.812 |
11.5 | 1.641 | 0.024 | 0.080 | CF__11_5 | CF | 34 | 0.268 | 0.357 | 295.5 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 1.661 | -0.038 | 1.433 | -0.026 | 14.338 | 1.650 | 1.443 | 2.724 |
25.0 | 6.689 | 0.296 | 0.550 | CF__25_0 | CF | 72 | 0.555 | 0.740 | 1252.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 475.0 | 256.250 | 218.750 | 6.826 | 0.294 | 4.333 | 0.046 | 29.034 | 4.657 | 6.351 | 2.756 |
25.5 | 4.287 | 0.121 | 0.665 | CF__25_5 | CF | 72 | 0.550 | 0.733 | 1289.5 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 484.5 | 261.375 | 223.125 | 4.454 | 0.404 | 2.712 | 0.102 | 17.789 | 3.043 | 3.969 | 2.798 |
26.0 | 4.829 | 0.160 | 1.263 | CF__26_0 | CF | 72 | 0.544 | 0.726 | 1327.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 494.0 | 266.500 | 227.500 | 5.145 | 0.996 | 3.114 | 0.214 | 20.444 | 3.444 | 4.651 | 2.784 |
26.5 | 5.456 | 0.128 | 1.912 | CF__26_5 | CF | 66 | 0.556 | 0.741 | 1361.5 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 503.5 | 271.625 | 231.875 | 5.934 | 1.640 | 2.162 | 0.302 | 23.418 | 2.363 | 5.430 | 2.627 |
27.0 | 5.487 | 0.105 | 0.113 | CF__27_0 | CF | 60 | 0.567 | 0.756 | 1396.0 | 2.48 | 70 | 32 | 0.75 | 1 | 19 | 1 | 513.0 | 276.750 | 236.250 | 5.515 | -0.164 | 1.911 | -0.033 | 21.172 | 2.107 | 5.002 | 2.633 |
10.5 | 2.046 | 0.060 | 0.133 | CC__10_5 | CC | 20 | 0.180 | 0.240 | 102.0 | 2.48 | 50 | 27 | 0.75 | 1 | 19 | 1 | 199.5 | 107.625 | 91.875 | 2.079 | 0.026 | 2.881 | 0.014 | 20.463 | 3.186 | 1.880 | 2.764 |
11.5 | 2.311 | 0.057 | 0.219 | CC__11_5 | CC | 20 | 0.164 | 0.218 | 124.5 | 2.48 | 50 | 27 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 2.366 | 0.102 | 2.396 | 0.047 | 21.342 | 2.640 | 2.148 | 2.698 |
27.5 | 4.705 | 0.126 | 0.179 | DY__27_5 | DY | 90 | 0.478 | 0.638 | 1988.5 | 2.48 | 50 | 32 | 0.75 | 1 | 19 | 1 | 522.5 | 281.875 | 240.625 | 4.750 | -0.102 | 2.652 | -0.024 | 17.567 | 2.980 | 4.227 | 2.797 |
10.5 | 3.111 | 0.114 | 0.262 | AW__10_5 | AW | 46 | 0.301 | 0.402 | 337.0 | 2.48 | 55 | 32 | 0.75 | 1 | 19 | 1 | 199.5 | 107.625 | 91.875 | 3.177 | 0.154 | 3.595 | 0.052 | 32.403 | 3.836 | 2.977 | 2.666 |
13.5 | 3.585 | 0.131 | -0.140 | ED__13_5 | ED | 28 | 0.313 | 0.417 | 254.5 | 2.48 | 70 | 27 | 0.75 | 1 | 19 | 1 | 256.5 | 138.375 | 118.125 | 3.550 | -0.278 | 3.695 | -0.084 | 27.886 | 3.983 | 3.294 | 2.720 |
15.0 | 2.971 | 0.062 | -0.284 | AT__15_0 | AT | 72 | 0.478 | 0.637 | 353.0 | 2.48 | 55 | 29 | 0.75 | 1 | 19 | 1 | 285.0 | 153.750 | 131.250 | 2.900 | -0.438 | 2.153 | -0.167 | 19.924 | 2.388 | 2.615 | 2.690 |
25.5 | 4.827 | 0.187 | 0.269 | CO__25_5 | CO | 86 | 0.523 | 0.698 | 1482.5 | 2.48 | 50 | 30 | 0.75 | 1 | 19 | 1 | 484.5 | 261.375 | 223.125 | 4.895 | 0.008 | 3.814 | 0.002 | 19.766 | 4.233 | 4.410 | 2.853 |
12.5 | 2.705 | 0.115 | -0.082 | DA__12_5 | DA | 24 | 0.218 | 0.290 | 143.0 | 2.48 | 70 | 25 | 0.75 | 1 | 19 | 1 | 237.5 | 128.125 | 109.375 | 2.685 | -0.210 | 4.298 | -0.086 | 22.377 | 4.715 | 2.448 | 2.842 |
11.5 | 3.228 | 0.098 | 0.126 | EG__11_5 | EG | 50 | 0.262 | 0.349 | 310.5 | 2.48 | 50 | 30 | 0.75 | 1 | 19 | 1 | 218.5 | 117.875 | 100.625 | 3.259 | 0.008 | 3.007 | 0.003 | 30.216 | 3.223 | 3.041 | 2.635 |
11.0 | 2.627 | 0.074 | 0.126 | DM__11_0 | DM | 24 | 0.243 | 0.324 | 225.0 | 2.48 | 50 | 31 | 0.75 | 1 | 19 | 1 | 209.0 | 112.750 | 96.250 | 2.658 | 0.013 | 2.795 | 0.005 | 25.448 | 3.033 | 2.449 | 2.677 |
1.0 | 0.347 | 0.016 | 0.025 | AN__1_0 | AN | NA | NA | NA | NA | 2.48 | 55 | 30 | 0.75 | 1 | 19 | 1 | 19.0 | 10.250 | 8.750 | 0.353 | 0.015 | 4.490 | 0.044 | 38.200 | 4.745 | 0.334 | 2.750 |
38.5 | 9.247 | 0.236 | -0.208 | BC__38_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 731.5 | 394.625 | 336.875 | 9.195 | -0.602 | 2.563 | -0.071 | 25.124 | 2.785 | 8.464 | 2.656 |
41.0 | 6.616 | 0.212 | -0.119 | BC__41_0 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 779.0 | 420.250 | 358.750 | 6.586 | -0.539 | 3.222 | -0.093 | 16.187 | 3.654 | 5.807 | 2.879 |
41.5 | 5.836 | 0.231 | 0.353 | BC__41_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 788.5 | 425.375 | 363.125 | 5.925 | -0.072 | 3.894 | -0.014 | 14.144 | 4.492 | 5.136 | 2.981 |
42.0 | 5.571 | 0.215 | 1.179 | BC__42_0 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 798.0 | 430.500 | 367.500 | 5.865 | 0.749 | 3.664 | 0.148 | 13.789 | 4.241 | 5.067 | 2.974 |
42.5 | 5.012 | 0.201 | 1.243 | BC__42_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 807.5 | 435.625 | 371.875 | 5.322 | 0.808 | 3.784 | 0.179 | 12.141 | 4.461 | 4.515 | 3.031 |
43.0 | 3.789 | 0.151 | 0.760 | BC__43_0 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 817.0 | 440.750 | 376.250 | 3.979 | 0.319 | 3.787 | 0.101 | 8.404 | 4.766 | 3.162 | 3.175 |
43.5 | 3.956 | 0.176 | 1.057 | BC__43_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 826.5 | 445.875 | 380.625 | 4.221 | 0.611 | 4.158 | 0.180 | 8.917 | 5.171 | 3.394 | 3.176 |
44.0 | 6.573 | 0.196 | 1.105 | BC__44_0 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 836.0 | 451.000 | 385.000 | 6.850 | 0.654 | 2.869 | 0.109 | 15.620 | 3.268 | 6.014 | 2.862 |
45.5 | 7.516 | 0.169 | -0.260 | BC__45_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 864.5 | 466.375 | 398.125 | 7.451 | -0.727 | 2.267 | -0.110 | 16.544 | 2.564 | 6.586 | 2.779 |
46.5 | 4.458 | 0.179 | -0.241 | BC__46_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 883.5 | 476.625 | 406.875 | 4.398 | -0.718 | 4.077 | -0.204 | 8.637 | 5.102 | 3.514 | 3.184 |
47.0 | 4.204 | 0.169 | 0.021 | BC__47_0 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 893.0 | 481.750 | 411.250 | 4.209 | -0.461 | 4.011 | -0.139 | 8.063 | 5.091 | 3.316 | 3.207 |
47.5 | 4.129 | 0.106 | 0.374 | BC__47_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 902.5 | 486.875 | 415.625 | 4.222 | -0.113 | 2.519 | -0.034 | 7.988 | 3.204 | 3.320 | 3.094 |
48.0 | 6.130 | 0.196 | -0.424 | BC__48_0 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 912.0 | 492.000 | 420.000 | 6.024 | -0.916 | 3.254 | -0.179 | 12.171 | 3.834 | 5.112 | 2.990 |
48.5 | 3.613 | 0.098 | 1.463 | BC__48_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 921.5 | 497.125 | 424.375 | 3.979 | 0.966 | 2.470 | 0.316 | 7.205 | 3.215 | 3.058 | 3.132 |
49.5 | 6.013 | 0.172 | -0.499 | BC__49_5 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 940.5 | 507.375 | 433.125 | 5.888 | -1.007 | 2.920 | -0.203 | 11.423 | 3.474 | 4.947 | 2.987 |
50.0 | 4.809 | 0.111 | 0.340 | BC__50_0 | BC | NA | NA | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 950.0 | 512.500 | 437.500 | 4.894 | -0.172 | 2.266 | -0.044 | 9.015 | 2.812 | 3.944 | 3.018 |
14.5 | 3.169 | 0.129 | 0.127 | DD__14_5 | DD | 42 | 0.366 | 0.488 | 356.5 | 2.48 | 50 | 26 | 0.75 | 1 | 19 | 1 | 275.5 | 148.625 | 126.875 | 3.201 | -0.021 | 4.024 | -0.007 | 23.058 | 4.403 | 2.925 | 2.812 |
kable(top_n(validation_no, 100),
digits = 3,
caption = "Normalised validation data.",
align = "r") %>%
kable_styling(font_size = 11) %>%
row_spec(0, color = "grey10", background = "#F4F5F6") %>%
scroll_box(height = "300px")
z [m] | qc [MPa] | fs [MPa] | u2 [MPa] | ID | Location ID | Normalised ENTRHU [-] | Normalised hammer energy [-] | Diameter [m] | Bottom wall thickness [mm] | Pile penetration [m] | area ratio [-] | Push | Total unit weight [kN/m3] | Layer no | Vertical total stress [kPa] | Water pressure [kPa] | Vertical effective stress [kPa] | qt [MPa] | Delta u2 [MPa] | Rf [%] | Bq [-] | Qt [-] | Fr [%] | qnet [MPa] | Ic [-] |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
32.5 | 7.863 | 0.224 | 0.906 | BX__32_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 617.5 | 333.125 | 284.375 | 8.089 | 0.573 | 2.773 | 0.077 | 26.275 | 3.003 | 7.472 | 2.662 |
33.0 | 3.015 | 0.050 | 1.318 | BX__33_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 627.0 | 338.250 | 288.750 | 3.344 | 0.980 | 1.491 | 0.361 | 9.411 | 1.835 | 2.717 | 2.904 |
33.5 | 2.712 | 0.038 | 1.438 | BX__33_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 636.5 | 343.375 | 293.125 | 3.072 | 1.095 | 1.228 | 0.450 | 8.307 | 1.549 | 2.435 | 2.914 |
34.0 | 3.168 | 0.069 | 0.041 | BX__34_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 646.0 | 348.500 | 297.500 | 3.178 | -0.308 | 2.184 | -0.121 | 8.512 | 2.741 | 2.532 | 3.033 |
36.0 | 5.779 | 0.215 | 0.123 | BX__36_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 684.0 | 369.000 | 315.000 | 5.810 | -0.246 | 3.693 | -0.048 | 16.272 | 4.186 | 5.126 | 2.914 |
36.5 | 8.903 | 0.267 | -0.316 | BX__36_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 693.5 | 374.125 | 319.375 | 8.824 | -0.690 | 3.022 | -0.085 | 25.457 | 3.280 | 8.130 | 2.697 |
40.0 | 10.292 | 0.257 | -0.386 | BX__40_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 760.0 | 410.000 | 350.000 | 10.195 | -0.796 | 2.517 | -0.084 | 26.958 | 2.720 | 9.435 | 2.626 |
40.5 | 3.886 | 0.079 | -0.395 | BX__40_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 769.5 | 415.125 | 354.375 | 3.787 | -0.810 | 2.085 | -0.269 | 8.516 | 2.617 | 3.018 | 3.022 |
41.0 | 3.027 | 0.046 | -0.380 | BX__41_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 779.0 | 420.250 | 358.750 | 2.932 | -0.800 | 1.583 | -0.372 | 6.001 | 2.156 | 2.153 | 3.108 |
41.5 | 4.140 | 0.140 | -0.362 | BX__41_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 788.5 | 425.375 | 363.125 | 4.049 | -0.788 | 3.452 | -0.242 | 8.980 | 4.287 | 3.261 | 3.125 |
42.0 | 4.848 | 0.141 | -0.216 | BX__42_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 798.0 | 430.500 | 367.500 | 4.794 | -0.646 | 2.944 | -0.162 | 10.872 | 3.532 | 3.996 | 3.008 |
42.5 | 5.117 | 0.194 | 0.067 | BX__42_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 807.5 | 435.625 | 371.875 | 5.134 | -0.369 | 3.781 | -0.085 | 11.634 | 4.487 | 4.327 | 3.047 |
43.0 | 5.387 | 0.247 | 0.349 | BX__43_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 817.0 | 440.750 | 376.250 | 5.474 | -0.091 | 4.514 | -0.020 | 12.379 | 5.306 | 4.657 | 3.071 |
43.5 | 7.043 | 0.235 | 0.580 | BX__43_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 826.5 | 445.875 | 380.625 | 7.188 | 0.134 | 3.274 | 0.021 | 16.713 | 3.699 | 6.361 | 2.872 |
44.5 | 8.339 | 0.251 | 0.085 | BX__44_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 845.5 | 456.125 | 389.375 | 8.360 | -0.371 | 2.997 | -0.049 | 19.299 | 3.334 | 7.515 | 2.795 |
45.0 | 8.044 | 0.239 | 0.279 | BX__45_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 855.0 | 461.250 | 393.750 | 8.114 | -0.182 | 2.947 | -0.025 | 18.435 | 3.294 | 7.259 | 2.807 |
45.5 | 4.854 | 0.206 | 0.189 | BX__45_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 864.5 | 466.375 | 398.125 | 4.901 | -0.278 | 4.195 | -0.069 | 10.139 | 5.093 | 4.037 | 3.128 |
46.0 | 3.901 | 0.183 | 0.697 | BX__46_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 874.0 | 471.500 | 402.500 | 4.076 | 0.225 | 4.482 | 0.070 | 7.954 | 5.705 | 3.202 | 3.242 |
46.5 | 4.080 | 0.236 | 0.684 | BX__46_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 883.5 | 476.625 | 406.875 | 4.251 | 0.208 | 5.548 | 0.062 | 8.277 | 7.004 | 3.368 | 3.283 |
47.0 | 4.199 | 0.195 | 0.450 | BX__47_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 893.0 | 481.750 | 411.250 | 4.312 | -0.031 | 4.515 | -0.009 | 8.313 | 5.694 | 3.419 | 3.226 |
47.5 | 4.333 | 0.198 | 0.348 | BX__47_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 902.5 | 486.875 | 415.625 | 4.420 | -0.138 | 4.475 | -0.039 | 8.463 | 5.623 | 3.518 | 3.216 |
48.0 | 4.478 | 0.263 | 1.248 | BX__48_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 912.0 | 492.000 | 420.000 | 4.790 | 0.756 | 5.486 | 0.195 | 9.233 | 6.776 | 3.878 | 3.237 |
48.5 | 4.854 | 0.256 | 2.002 | BX__48_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 921.5 | 497.125 | 424.375 | 5.355 | 1.505 | 4.778 | 0.340 | 10.446 | 5.771 | 4.433 | 3.152 |
49.0 | 5.238 | 0.210 | 2.240 | BX__49_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 931.0 | 502.250 | 428.750 | 5.798 | 1.738 | 3.630 | 0.357 | 11.351 | 4.324 | 4.867 | 3.046 |
49.5 | 4.987 | 0.199 | 2.080 | BX__49_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 940.5 | 507.375 | 433.125 | 5.507 | 1.572 | 3.615 | 0.344 | 10.543 | 4.359 | 4.566 | 3.073 |
50.0 | 4.736 | 0.188 | 1.919 | BX__50_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 950.0 | 512.500 | 437.500 | 5.216 | 1.406 | 3.598 | 0.330 | 9.751 | 4.400 | 4.266 | 3.103 |
50.5 | 8.496 | 0.234 | 0.502 | BX__50_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 959.5 | 517.625 | 441.875 | 8.621 | -0.016 | 2.709 | -0.002 | 17.339 | 3.048 | 7.662 | 2.807 |
51.0 | 3.739 | 0.102 | 2.134 | BX__51_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 969.0 | 522.750 | 446.250 | 4.272 | 1.611 | 2.386 | 0.488 | 7.403 | 3.086 | 3.303 | 3.112 |
51.5 | 4.661 | 0.199 | 0.870 | BX__51_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 978.5 | 527.875 | 450.625 | 4.878 | 0.342 | 4.087 | 0.088 | 8.654 | 5.113 | 3.900 | 3.184 |
52.0 | 11.025 | 0.235 | -0.570 | BX__52_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 988.0 | 533.000 | 455.000 | 10.882 | -1.103 | 2.161 | -0.112 | 21.746 | 2.377 | 9.894 | 2.664 |
52.5 | 14.213 | 0.437 | -0.415 | BX__52_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 997.5 | 538.125 | 459.375 | 14.109 | -0.954 | 3.101 | -0.073 | 28.542 | 3.337 | 13.112 | 2.664 |
54.0 | 11.391 | 0.420 | 0.123 | BX__54_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1026.0 | 553.500 | 472.500 | 11.422 | -0.430 | 3.675 | -0.041 | 22.002 | 4.038 | 10.396 | 2.804 |
57.5 | 5.914 | 0.269 | -0.017 | BX__57_5 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1092.5 | 589.375 | 503.125 | 5.910 | -0.606 | 4.559 | -0.126 | 9.575 | 5.593 | 4.817 | 3.173 |
58.0 | 10.613 | 0.352 | -0.069 | BX__58_0 | BX | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1102.0 | 594.500 | 507.500 | 10.596 | -0.663 | 3.326 | -0.070 | 18.707 | 3.712 | 9.494 | 2.834 |
32.5 | 7.863 | 0.224 | 0.906 | BY__32_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 617.5 | 333.125 | 284.375 | 8.089 | 0.573 | 2.773 | 0.077 | 26.275 | 3.003 | 7.472 | 2.662 |
33.0 | 3.015 | 0.050 | 1.318 | BY__33_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 627.0 | 338.250 | 288.750 | 3.344 | 0.980 | 1.491 | 0.361 | 9.411 | 1.835 | 2.717 | 2.904 |
33.5 | 2.712 | 0.038 | 1.438 | BY__33_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 636.5 | 343.375 | 293.125 | 3.072 | 1.095 | 1.228 | 0.450 | 8.307 | 1.549 | 2.435 | 2.914 |
34.0 | 3.168 | 0.069 | 0.041 | BY__34_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 646.0 | 348.500 | 297.500 | 3.178 | -0.308 | 2.184 | -0.121 | 8.512 | 2.741 | 2.532 | 3.033 |
36.0 | 5.779 | 0.215 | 0.123 | BY__36_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 684.0 | 369.000 | 315.000 | 5.810 | -0.246 | 3.693 | -0.048 | 16.272 | 4.186 | 5.126 | 2.914 |
36.5 | 8.903 | 0.267 | -0.316 | BY__36_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 693.5 | 374.125 | 319.375 | 8.824 | -0.690 | 3.022 | -0.085 | 25.457 | 3.280 | 8.130 | 2.697 |
40.0 | 10.292 | 0.257 | -0.386 | BY__40_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 760.0 | 410.000 | 350.000 | 10.195 | -0.796 | 2.517 | -0.084 | 26.958 | 2.720 | 9.435 | 2.626 |
40.5 | 3.886 | 0.079 | -0.395 | BY__40_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 769.5 | 415.125 | 354.375 | 3.787 | -0.810 | 2.085 | -0.269 | 8.516 | 2.617 | 3.018 | 3.022 |
41.0 | 3.027 | 0.046 | -0.380 | BY__41_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 779.0 | 420.250 | 358.750 | 2.932 | -0.800 | 1.583 | -0.372 | 6.001 | 2.156 | 2.153 | 3.108 |
41.5 | 4.140 | 0.140 | -0.362 | BY__41_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 788.5 | 425.375 | 363.125 | 4.049 | -0.788 | 3.452 | -0.242 | 8.980 | 4.287 | 3.261 | 3.125 |
42.0 | 4.848 | 0.141 | -0.216 | BY__42_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 798.0 | 430.500 | 367.500 | 4.794 | -0.646 | 2.944 | -0.162 | 10.872 | 3.532 | 3.996 | 3.008 |
42.5 | 5.117 | 0.194 | 0.067 | BY__42_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 807.5 | 435.625 | 371.875 | 5.134 | -0.369 | 3.781 | -0.085 | 11.634 | 4.487 | 4.327 | 3.047 |
43.0 | 5.387 | 0.247 | 0.349 | BY__43_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 817.0 | 440.750 | 376.250 | 5.474 | -0.091 | 4.514 | -0.020 | 12.379 | 5.306 | 4.657 | 3.071 |
43.5 | 7.043 | 0.235 | 0.580 | BY__43_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 826.5 | 445.875 | 380.625 | 7.188 | 0.134 | 3.274 | 0.021 | 16.713 | 3.699 | 6.361 | 2.872 |
44.5 | 8.339 | 0.251 | 0.085 | BY__44_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 845.5 | 456.125 | 389.375 | 8.360 | -0.371 | 2.997 | -0.049 | 19.299 | 3.334 | 7.515 | 2.795 |
45.0 | 8.044 | 0.239 | 0.279 | BY__45_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 855.0 | 461.250 | 393.750 | 8.114 | -0.182 | 2.947 | -0.025 | 18.435 | 3.294 | 7.259 | 2.807 |
45.5 | 4.854 | 0.206 | 0.189 | BY__45_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 864.5 | 466.375 | 398.125 | 4.901 | -0.278 | 4.195 | -0.069 | 10.139 | 5.093 | 4.037 | 3.128 |
46.0 | 3.901 | 0.183 | 0.697 | BY__46_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 874.0 | 471.500 | 402.500 | 4.076 | 0.225 | 4.482 | 0.070 | 7.954 | 5.705 | 3.202 | 3.242 |
46.5 | 4.080 | 0.236 | 0.684 | BY__46_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 883.5 | 476.625 | 406.875 | 4.251 | 0.208 | 5.548 | 0.062 | 8.277 | 7.004 | 3.368 | 3.283 |
47.0 | 4.199 | 0.195 | 0.450 | BY__47_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 893.0 | 481.750 | 411.250 | 4.312 | -0.031 | 4.515 | -0.009 | 8.313 | 5.694 | 3.419 | 3.226 |
47.5 | 4.333 | 0.198 | 0.348 | BY__47_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 902.5 | 486.875 | 415.625 | 4.420 | -0.138 | 4.475 | -0.039 | 8.463 | 5.623 | 3.518 | 3.216 |
48.0 | 4.478 | 0.263 | 1.248 | BY__48_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 912.0 | 492.000 | 420.000 | 4.790 | 0.756 | 5.486 | 0.195 | 9.233 | 6.776 | 3.878 | 3.237 |
48.5 | 4.854 | 0.256 | 2.002 | BY__48_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 921.5 | 497.125 | 424.375 | 5.355 | 1.505 | 4.778 | 0.340 | 10.446 | 5.771 | 4.433 | 3.152 |
49.0 | 5.238 | 0.210 | 2.240 | BY__49_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 931.0 | 502.250 | 428.750 | 5.798 | 1.738 | 3.630 | 0.357 | 11.351 | 4.324 | 4.867 | 3.046 |
49.5 | 4.987 | 0.199 | 2.080 | BY__49_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 940.5 | 507.375 | 433.125 | 5.507 | 1.572 | 3.615 | 0.344 | 10.543 | 4.359 | 4.566 | 3.073 |
50.0 | 4.736 | 0.188 | 1.919 | BY__50_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 950.0 | 512.500 | 437.500 | 5.216 | 1.406 | 3.598 | 0.330 | 9.751 | 4.400 | 4.266 | 3.103 |
50.5 | 8.496 | 0.234 | 0.502 | BY__50_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 959.5 | 517.625 | 441.875 | 8.621 | -0.016 | 2.709 | -0.002 | 17.339 | 3.048 | 7.662 | 2.807 |
51.0 | 3.739 | 0.102 | 2.134 | BY__51_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 969.0 | 522.750 | 446.250 | 4.272 | 1.611 | 2.386 | 0.488 | 7.403 | 3.086 | 3.303 | 3.112 |
51.5 | 4.661 | 0.199 | 0.870 | BY__51_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 978.5 | 527.875 | 450.625 | 4.878 | 0.342 | 4.087 | 0.088 | 8.654 | 5.113 | 3.900 | 3.184 |
52.0 | 11.025 | 0.235 | -0.570 | BY__52_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 988.0 | 533.000 | 455.000 | 10.882 | -1.103 | 2.161 | -0.112 | 21.746 | 2.377 | 9.894 | 2.664 |
52.5 | 14.213 | 0.437 | -0.415 | BY__52_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 997.5 | 538.125 | 459.375 | 14.109 | -0.954 | 3.101 | -0.073 | 28.542 | 3.337 | 13.112 | 2.664 |
54.0 | 11.391 | 0.420 | 0.123 | BY__54_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1026.0 | 553.500 | 472.500 | 11.422 | -0.430 | 3.675 | -0.041 | 22.002 | 4.038 | 10.396 | 2.804 |
57.5 | 5.914 | 0.269 | -0.017 | BY__57_5 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1092.5 | 589.375 | 503.125 | 5.910 | -0.606 | 4.559 | -0.126 | 9.575 | 5.593 | 4.817 | 3.173 |
58.0 | 10.613 | 0.352 | -0.069 | BY__58_0 | BY | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1102.0 | 594.500 | 507.500 | 10.596 | -0.663 | 3.326 | -0.070 | 18.707 | 3.712 | 9.494 | 2.834 |
32.5 | 7.863 | 0.224 | 0.906 | BZ__32_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 617.5 | 333.125 | 284.375 | 8.089 | 0.573 | 2.773 | 0.077 | 26.275 | 3.003 | 7.472 | 2.662 |
33.0 | 3.015 | 0.050 | 1.318 | BZ__33_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 627.0 | 338.250 | 288.750 | 3.344 | 0.980 | 1.491 | 0.361 | 9.411 | 1.835 | 2.717 | 2.904 |
33.5 | 2.712 | 0.038 | 1.438 | BZ__33_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 636.5 | 343.375 | 293.125 | 3.072 | 1.095 | 1.228 | 0.450 | 8.307 | 1.549 | 2.435 | 2.914 |
34.0 | 3.168 | 0.069 | 0.041 | BZ__34_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 646.0 | 348.500 | 297.500 | 3.178 | -0.308 | 2.184 | -0.121 | 8.512 | 2.741 | 2.532 | 3.033 |
36.0 | 5.779 | 0.215 | 0.123 | BZ__36_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 684.0 | 369.000 | 315.000 | 5.810 | -0.246 | 3.693 | -0.048 | 16.272 | 4.186 | 5.126 | 2.914 |
36.5 | 8.903 | 0.267 | -0.316 | BZ__36_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 693.5 | 374.125 | 319.375 | 8.824 | -0.690 | 3.022 | -0.085 | 25.457 | 3.280 | 8.130 | 2.697 |
40.0 | 10.292 | 0.257 | -0.386 | BZ__40_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 760.0 | 410.000 | 350.000 | 10.195 | -0.796 | 2.517 | -0.084 | 26.958 | 2.720 | 9.435 | 2.626 |
40.5 | 3.886 | 0.079 | -0.395 | BZ__40_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 769.5 | 415.125 | 354.375 | 3.787 | -0.810 | 2.085 | -0.269 | 8.516 | 2.617 | 3.018 | 3.022 |
41.0 | 3.027 | 0.046 | -0.380 | BZ__41_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 779.0 | 420.250 | 358.750 | 2.932 | -0.800 | 1.583 | -0.372 | 6.001 | 2.156 | 2.153 | 3.108 |
41.5 | 4.140 | 0.140 | -0.362 | BZ__41_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 788.5 | 425.375 | 363.125 | 4.049 | -0.788 | 3.452 | -0.242 | 8.980 | 4.287 | 3.261 | 3.125 |
42.0 | 4.848 | 0.141 | -0.216 | BZ__42_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 798.0 | 430.500 | 367.500 | 4.794 | -0.646 | 2.944 | -0.162 | 10.872 | 3.532 | 3.996 | 3.008 |
42.5 | 5.117 | 0.194 | 0.067 | BZ__42_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 807.5 | 435.625 | 371.875 | 5.134 | -0.369 | 3.781 | -0.085 | 11.634 | 4.487 | 4.327 | 3.047 |
43.0 | 5.387 | 0.247 | 0.349 | BZ__43_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 817.0 | 440.750 | 376.250 | 5.474 | -0.091 | 4.514 | -0.020 | 12.379 | 5.306 | 4.657 | 3.071 |
43.5 | 7.043 | 0.235 | 0.580 | BZ__43_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 826.5 | 445.875 | 380.625 | 7.188 | 0.134 | 3.274 | 0.021 | 16.713 | 3.699 | 6.361 | 2.872 |
44.5 | 8.339 | 0.251 | 0.085 | BZ__44_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 845.5 | 456.125 | 389.375 | 8.360 | -0.371 | 2.997 | -0.049 | 19.299 | 3.334 | 7.515 | 2.795 |
45.0 | 8.044 | 0.239 | 0.279 | BZ__45_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 855.0 | 461.250 | 393.750 | 8.114 | -0.182 | 2.947 | -0.025 | 18.435 | 3.294 | 7.259 | 2.807 |
45.5 | 4.854 | 0.206 | 0.189 | BZ__45_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 864.5 | 466.375 | 398.125 | 4.901 | -0.278 | 4.195 | -0.069 | 10.139 | 5.093 | 4.037 | 3.128 |
46.0 | 3.901 | 0.183 | 0.697 | BZ__46_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 874.0 | 471.500 | 402.500 | 4.076 | 0.225 | 4.482 | 0.070 | 7.954 | 5.705 | 3.202 | 3.242 |
46.5 | 4.080 | 0.236 | 0.684 | BZ__46_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 883.5 | 476.625 | 406.875 | 4.251 | 0.208 | 5.548 | 0.062 | 8.277 | 7.004 | 3.368 | 3.283 |
47.0 | 4.199 | 0.195 | 0.450 | BZ__47_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 893.0 | 481.750 | 411.250 | 4.312 | -0.031 | 4.515 | -0.009 | 8.313 | 5.694 | 3.419 | 3.226 |
47.5 | 4.333 | 0.198 | 0.348 | BZ__47_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 902.5 | 486.875 | 415.625 | 4.420 | -0.138 | 4.475 | -0.039 | 8.463 | 5.623 | 3.518 | 3.216 |
48.0 | 4.478 | 0.263 | 1.248 | BZ__48_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 912.0 | 492.000 | 420.000 | 4.790 | 0.756 | 5.486 | 0.195 | 9.233 | 6.776 | 3.878 | 3.237 |
48.5 | 4.854 | 0.256 | 2.002 | BZ__48_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 921.5 | 497.125 | 424.375 | 5.355 | 1.505 | 4.778 | 0.340 | 10.446 | 5.771 | 4.433 | 3.152 |
49.0 | 5.238 | 0.210 | 2.240 | BZ__49_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 931.0 | 502.250 | 428.750 | 5.798 | 1.738 | 3.630 | 0.357 | 11.351 | 4.324 | 4.867 | 3.046 |
49.5 | 4.987 | 0.199 | 2.080 | BZ__49_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 940.5 | 507.375 | 433.125 | 5.507 | 1.572 | 3.615 | 0.344 | 10.543 | 4.359 | 4.566 | 3.073 |
50.0 | 4.736 | 0.188 | 1.919 | BZ__50_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 950.0 | 512.500 | 437.500 | 5.216 | 1.406 | 3.598 | 0.330 | 9.751 | 4.400 | 4.266 | 3.103 |
50.5 | 8.496 | 0.234 | 0.502 | BZ__50_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 959.5 | 517.625 | 441.875 | 8.621 | -0.016 | 2.709 | -0.002 | 17.339 | 3.048 | 7.662 | 2.807 |
51.0 | 3.739 | 0.102 | 2.134 | BZ__51_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 969.0 | 522.750 | 446.250 | 4.272 | 1.611 | 2.386 | 0.488 | 7.403 | 3.086 | 3.303 | 3.112 |
51.5 | 4.661 | 0.199 | 0.870 | BZ__51_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 978.5 | 527.875 | 450.625 | 4.878 | 0.342 | 4.087 | 0.088 | 8.654 | 5.113 | 3.900 | 3.184 |
52.0 | 11.025 | 0.235 | -0.570 | BZ__52_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 988.0 | 533.000 | 455.000 | 10.882 | -1.103 | 2.161 | -0.112 | 21.746 | 2.377 | 9.894 | 2.664 |
52.5 | 14.213 | 0.437 | -0.415 | BZ__52_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 997.5 | 538.125 | 459.375 | 14.109 | -0.954 | 3.101 | -0.073 | 28.542 | 3.337 | 13.112 | 2.664 |
54.0 | 11.391 | 0.420 | 0.123 | BZ__54_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1026.0 | 553.500 | 472.500 | 11.422 | -0.430 | 3.675 | -0.041 | 22.002 | 4.038 | 10.396 | 2.804 |
57.5 | 5.914 | 0.269 | -0.017 | BZ__57_5 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1092.5 | 589.375 | 503.125 | 5.910 | -0.606 | 4.559 | -0.126 | 9.575 | 5.593 | 4.817 | 3.173 |
58.0 | 10.613 | 0.352 | -0.069 | BZ__58_0 | BZ | NA | NA | NA | NA | NA | 0.75 | 1 | 19 | 1 | 1102.0 | 594.500 | 507.500 | 10.596 | -0.663 | 3.326 | -0.070 | 18.707 | 3.712 | 9.494 | 2.834 |
An additional file, which classifies the interdistance between each location pair, is provided. This file can be used to explore spatial correlation between locations.
<- read_csv("F:/isfog2020/interdistance_data.csv") interdistance
kable(top_n(interdistance, 100),
digits = 3,
caption = "Interdistance data.",
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6") %>%
scroll_box(height = "300px")
ID location 1 | ID location 2 | Interdistance class |
---|---|---|
AA | AD | 500m - 1500m |
AA | AE | 500m - 1500m |
AA | AL | 500m - 1500m |
AA | AM | 500m - 1500m |
AA | AN | 500m - 1500m |
AA | AO | 500m - 1500m |
AA | AP | 500m - 1500m |
AA | AQ | 500m - 1500m |
AB | AD | 500m - 1500m |
AB | AE | 500m - 1500m |
AB | AL | 500m - 1500m |
AB | AM | 500m - 1500m |
AB | AN | 500m - 1500m |
AB | AO | 500m - 1500m |
AB | AP | 500m - 1500m |
AB | AQ | 500m - 1500m |
AC | AD | 500m - 1500m |
AC | AE | 500m - 1500m |
AC | AL | 500m - 1500m |
AC | AM | 500m - 1500m |
AC | AN | 500m - 1500m |
AC | AO | 500m - 1500m |
AC | AP | 500m - 1500m |
AC | AQ | 500m - 1500m |
AD | AA | 500m - 1500m |
AD | AB | 500m - 1500m |
AD | AC | 500m - 1500m |
AD | AF | 500m - 1500m |
AD | AG | 500m - 1500m |
AD | AH | 500m - 1500m |
AD | AL | 500m - 1500m |
AD | AM | 500m - 1500m |
AD | AN | 500m - 1500m |
AD | AO | 500m - 1500m |
AD | AP | 500m - 1500m |
AD | AQ | 500m - 1500m |
AD | AR | 500m - 1500m |
AD | AS | 500m - 1500m |
AD | AT | 500m - 1500m |
AE | AA | 500m - 1500m |
AE | AB | 500m - 1500m |
AE | AC | 500m - 1500m |
AE | AF | 500m - 1500m |
AE | AG | 500m - 1500m |
AE | AH | 500m - 1500m |
AE | AL | 500m - 1500m |
AE | AM | 500m - 1500m |
AE | AN | 500m - 1500m |
AE | AO | 500m - 1500m |
AE | AP | 500m - 1500m |
AE | AQ | 500m - 1500m |
AE | AR | 500m - 1500m |
AE | AS | 500m - 1500m |
AE | AT | 500m - 1500m |
AF | AD | 500m - 1500m |
AF | AE | 500m - 1500m |
AF | AI | 500m - 1500m |
AF | AJ | 500m - 1500m |
AF | AK | 500m - 1500m |
AF | AO | 500m - 1500m |
AF | AP | 500m - 1500m |
AF | AQ | 500m - 1500m |
AF | AR | 500m - 1500m |
AF | AS | 500m - 1500m |
AF | AT | 500m - 1500m |
AF | AU | 500m - 1500m |
AF | AV | 500m - 1500m |
AF | AW | 500m - 1500m |
AG | AD | 500m - 1500m |
AG | AE | 500m - 1500m |
AG | AI | 500m - 1500m |
AG | AJ | 500m - 1500m |
AG | AK | 500m - 1500m |
AG | AO | 500m - 1500m |
AG | AP | 500m - 1500m |
AG | AQ | 500m - 1500m |
AG | AR | 500m - 1500m |
AG | AS | 500m - 1500m |
AG | AT | 500m - 1500m |
AG | AU | 500m - 1500m |
AG | AV | 500m - 1500m |
AG | AW | 500m - 1500m |
AH | AD | 500m - 1500m |
AH | AE | 500m - 1500m |
AH | AI | 500m - 1500m |
AH | AJ | 500m - 1500m |
AH | AK | 500m - 1500m |
AH | AO | 500m - 1500m |
AH | AP | 500m - 1500m |
AH | AQ | 500m - 1500m |
AH | AR | 500m - 1500m |
AH | AS | 500m - 1500m |
AH | AT | 500m - 1500m |
AH | AU | 500m - 1500m |
AH | AV | 500m - 1500m |
AH | AW | 500m - 1500m |
AI | AF | 500m - 1500m |
AI | AG | 500m - 1500m |
AI | AH | 500m - 1500m |
AI | AR | 500m - 1500m |
AI | AS | 500m - 1500m |
AI | AT | 500m - 1500m |
AI | AU | 500m - 1500m |
AI | AV | 500m - 1500m |
AI | AW | 500m - 1500m |
AJ | AF | 500m - 1500m |
AJ | AG | 500m - 1500m |
AJ | AH | 500m - 1500m |
AJ | AR | 500m - 1500m |
AJ | AS | 500m - 1500m |
AJ | AT | 500m - 1500m |
AJ | AU | 500m - 1500m |
AJ | AV | 500m - 1500m |
AJ | AW | 500m - 1500m |
AK | AF | 500m - 1500m |
AK | AG | 500m - 1500m |
AK | AH | 500m - 1500m |
AK | AR | 500m - 1500m |
AK | AS | 500m - 1500m |
AK | AT | 500m - 1500m |
AK | AU | 500m - 1500m |
AK | AV | 500m - 1500m |
AK | AW | 500m - 1500m |
AL | AA | 500m - 1500m |
AL | AB | 500m - 1500m |
AL | AC | 500m - 1500m |
AL | AD | 500m - 1500m |
AL | AE | 500m - 1500m |
AL | AO | 500m - 1500m |
AL | AP | 500m - 1500m |
AL | AQ | 500m - 1500m |
AL | AX | 500m - 1500m |
AL | AY | 500m - 1500m |
AL | AZ | 500m - 1500m |
AL | BA | 500m - 1500m |
AL | BB | 500m - 1500m |
AL | BC | 500m - 1500m |
AM | AA | 500m - 1500m |
AM | AB | 500m - 1500m |
AM | AC | 500m - 1500m |
AM | AD | 500m - 1500m |
AM | AE | 500m - 1500m |
AM | AO | 500m - 1500m |
AM | AP | 500m - 1500m |
AM | AQ | 500m - 1500m |
AM | AX | 500m - 1500m |
AM | AY | 500m - 1500m |
AM | AZ | 500m - 1500m |
AM | BA | 500m - 1500m |
AM | BB | 500m - 1500m |
AM | BC | 500m - 1500m |
AN | AA | 500m - 1500m |
AN | AB | 500m - 1500m |
AN | AC | 500m - 1500m |
AN | AD | 500m - 1500m |
AN | AE | 500m - 1500m |
AN | AO | 500m - 1500m |
AN | AP | 500m - 1500m |
AN | AQ | 500m - 1500m |
AN | AX | 500m - 1500m |
AN | AY | 500m - 1500m |
AN | AZ | 500m - 1500m |
AN | BA | 500m - 1500m |
AN | BB | 500m - 1500m |
AN | BC | 500m - 1500m |
AO | AA | 500m - 1500m |
AO | AB | 500m - 1500m |
AO | AC | 500m - 1500m |
AO | AD | 500m - 1500m |
AO | AE | 500m - 1500m |
AO | AF | 500m - 1500m |
AO | AG | 500m - 1500m |
AO | AH | 500m - 1500m |
AO | AL | 500m - 1500m |
AO | AM | 500m - 1500m |
AO | AN | 500m - 1500m |
AO | AR | 500m - 1500m |
AO | AS | 500m - 1500m |
AO | AT | 500m - 1500m |
AO | AX | 500m - 1500m |
AO | AY | 500m - 1500m |
AO | AZ | 500m - 1500m |
AO | BA | 500m - 1500m |
AO | BB | 500m - 1500m |
AO | BC | 500m - 1500m |
AO | BD | 500m - 1500m |
AO | BE | 500m - 1500m |
AO | BF | 500m - 1500m |
AP | AA | 500m - 1500m |
AP | AB | 500m - 1500m |
AP | AC | 500m - 1500m |
AP | AD | 500m - 1500m |
AP | AE | 500m - 1500m |
AP | AF | 500m - 1500m |
AP | AG | 500m - 1500m |
AP | AH | 500m - 1500m |
AP | AL | 500m - 1500m |
AP | AM | 500m - 1500m |
AP | AN | 500m - 1500m |
AP | AR | 500m - 1500m |
AP | AS | 500m - 1500m |
AP | AT | 500m - 1500m |
AP | AX | 500m - 1500m |
AP | AY | 500m - 1500m |
AP | AZ | 500m - 1500m |
AP | BA | 500m - 1500m |
AP | BB | 500m - 1500m |
AP | BC | 500m - 1500m |
AP | BD | 500m - 1500m |
AP | BE | 500m - 1500m |
AP | BF | 500m - 1500m |
AQ | AA | 500m - 1500m |
AQ | AB | 500m - 1500m |
AQ | AC | 500m - 1500m |
AQ | AD | 500m - 1500m |
AQ | AE | 500m - 1500m |
AQ | AF | 500m - 1500m |
AQ | AG | 500m - 1500m |
AQ | AH | 500m - 1500m |
AQ | AL | 500m - 1500m |
AQ | AM | 500m - 1500m |
AQ | AN | 500m - 1500m |
AQ | AR | 500m - 1500m |
AQ | AS | 500m - 1500m |
AQ | AT | 500m - 1500m |
AQ | AX | 500m - 1500m |
AQ | AY | 500m - 1500m |
AQ | AZ | 500m - 1500m |
AQ | BA | 500m - 1500m |
AQ | BB | 500m - 1500m |
AQ | BC | 500m - 1500m |
AQ | BD | 500m - 1500m |
AQ | BE | 500m - 1500m |
AQ | BF | 500m - 1500m |
AR | AD | 500m - 1500m |
AR | AE | 500m - 1500m |
AR | AF | 500m - 1500m |
AR | AG | 500m - 1500m |
AR | AH | 500m - 1500m |
AR | AI | 500m - 1500m |
AR | AJ | 500m - 1500m |
AR | AK | 500m - 1500m |
AR | AO | 500m - 1500m |
AR | AP | 500m - 1500m |
AR | AQ | 500m - 1500m |
AR | AU | 500m - 1500m |
AR | AV | 500m - 1500m |
AR | AW | 500m - 1500m |
AR | BA | 500m - 1500m |
AR | BB | 500m - 1500m |
AR | BC | 500m - 1500m |
AR | BD | 500m - 1500m |
AR | BE | 500m - 1500m |
AR | BF | 500m - 1500m |
AR | BG | 500m - 1500m |
AR | BH | 500m - 1500m |
AR | BI | 500m - 1500m |
AS | AD | 500m - 1500m |
AS | AE | 500m - 1500m |
AS | AF | 500m - 1500m |
AS | AG | 500m - 1500m |
AS | AH | 500m - 1500m |
AS | AI | 500m - 1500m |
AS | AJ | 500m - 1500m |
AS | AK | 500m - 1500m |
AS | AO | 500m - 1500m |
AS | AP | 500m - 1500m |
AS | AQ | 500m - 1500m |
AS | AU | 500m - 1500m |
AS | AV | 500m - 1500m |
AS | AW | 500m - 1500m |
AS | BA | 500m - 1500m |
AS | BB | 500m - 1500m |
AS | BC | 500m - 1500m |
AS | BD | 500m - 1500m |
AS | BE | 500m - 1500m |
AS | BF | 500m - 1500m |
AS | BG | 500m - 1500m |
AS | BH | 500m - 1500m |
AS | BI | 500m - 1500m |
AT | AD | 500m - 1500m |
AT | AE | 500m - 1500m |
AT | AF | 500m - 1500m |
AT | AG | 500m - 1500m |
AT | AH | 500m - 1500m |
AT | AI | 500m - 1500m |
AT | AJ | 500m - 1500m |
AT | AK | 500m - 1500m |
AT | AO | 500m - 1500m |
AT | AP | 500m - 1500m |
AT | AQ | 500m - 1500m |
AT | AU | 500m - 1500m |
AT | AV | 500m - 1500m |
AT | AW | 500m - 1500m |
AT | BA | 500m - 1500m |
AT | BB | 500m - 1500m |
AT | BC | 500m - 1500m |
AT | BD | 500m - 1500m |
AT | BE | 500m - 1500m |
AT | BF | 500m - 1500m |
AT | BG | 500m - 1500m |
AT | BH | 500m - 1500m |
AT | BI | 500m - 1500m |
AU | AF | 500m - 1500m |
AU | AG | 500m - 1500m |
AU | AH | 500m - 1500m |
AU | AI | 500m - 1500m |
AU | AJ | 500m - 1500m |
AU | AK | 500m - 1500m |
AU | AR | 500m - 1500m |
AU | AS | 500m - 1500m |
AU | AT | 500m - 1500m |
AU | BD | 500m - 1500m |
AU | BE | 500m - 1500m |
AU | BF | 500m - 1500m |
AU | BG | 500m - 1500m |
AU | BH | 500m - 1500m |
AU | BI | 500m - 1500m |
AV | AF | 500m - 1500m |
AV | AG | 500m - 1500m |
AV | AH | 500m - 1500m |
AV | AI | 500m - 1500m |
AV | AJ | 500m - 1500m |
AV | AK | 500m - 1500m |
AV | AR | 500m - 1500m |
AV | AS | 500m - 1500m |
AV | AT | 500m - 1500m |
AV | BD | 500m - 1500m |
AV | BE | 500m - 1500m |
AV | BF | 500m - 1500m |
AV | BG | 500m - 1500m |
AV | BH | 500m - 1500m |
AV | BI | 500m - 1500m |
AW | AF | 500m - 1500m |
AW | AG | 500m - 1500m |
AW | AH | 500m - 1500m |
AW | AI | 500m - 1500m |
AW | AJ | 500m - 1500m |
AW | AK | 500m - 1500m |
AW | AR | 500m - 1500m |
AW | AS | 500m - 1500m |
AW | AT | 500m - 1500m |
AW | BD | 500m - 1500m |
AW | BE | 500m - 1500m |
AW | BF | 500m - 1500m |
AW | BG | 500m - 1500m |
AW | BH | 500m - 1500m |
AW | BI | 500m - 1500m |
AX | AL | 500m - 1500m |
AX | AM | 500m - 1500m |
AX | AN | 500m - 1500m |
AX | AO | 500m - 1500m |
AX | AP | 500m - 1500m |
AX | AQ | 500m - 1500m |
AX | BA | 500m - 1500m |
AX | BB | 500m - 1500m |
AX | BC | 500m - 1500m |
AX | BR | 500m - 1500m |
AX | BS | 500m - 1500m |
AX | BT | 500m - 1500m |
AX | BU | 500m - 1500m |
AX | BV | 500m - 1500m |
AX | BW | 500m - 1500m |
AY | AL | 500m - 1500m |
AY | AM | 500m - 1500m |
AY | AN | 500m - 1500m |
AY | AO | 500m - 1500m |
AY | AP | 500m - 1500m |
AY | AQ | 500m - 1500m |
AY | BA | 500m - 1500m |
AY | BB | 500m - 1500m |
AY | BC | 500m - 1500m |
AY | BR | 500m - 1500m |
AY | BS | 500m - 1500m |
AY | BT | 500m - 1500m |
AY | BU | 500m - 1500m |
AY | BV | 500m - 1500m |
AY | BW | 500m - 1500m |
AZ | AL | 500m - 1500m |
AZ | AM | 500m - 1500m |
AZ | AN | 500m - 1500m |
AZ | AO | 500m - 1500m |
AZ | AP | 500m - 1500m |
AZ | AQ | 500m - 1500m |
AZ | BA | 500m - 1500m |
AZ | BB | 500m - 1500m |
AZ | BC | 500m - 1500m |
AZ | BR | 500m - 1500m |
AZ | BS | 500m - 1500m |
AZ | BT | 500m - 1500m |
AZ | BU | 500m - 1500m |
AZ | BV | 500m - 1500m |
AZ | BW | 500m - 1500m |
BA | AL | 500m - 1500m |
BA | AM | 500m - 1500m |
BA | AN | 500m - 1500m |
BA | AO | 500m - 1500m |
BA | AP | 500m - 1500m |
BA | AQ | 500m - 1500m |
BA | AR | 500m - 1500m |
BA | AS | 500m - 1500m |
BA | AT | 500m - 1500m |
BA | AX | 500m - 1500m |
BA | AY | 500m - 1500m |
BA | AZ | 500m - 1500m |
BA | BD | 500m - 1500m |
BA | BE | 500m - 1500m |
BA | BF | 500m - 1500m |
BA | BR | 500m - 1500m |
BA | BS | 500m - 1500m |
BA | BT | 500m - 1500m |
BA | BU | 500m - 1500m |
BA | BV | 500m - 1500m |
BA | BW | 500m - 1500m |
BA | BX | 500m - 1500m |
BA | BY | 500m - 1500m |
BA | BZ | 500m - 1500m |
BB | AL | 500m - 1500m |
BB | AM | 500m - 1500m |
BB | AN | 500m - 1500m |
BB | AO | 500m - 1500m |
BB | AP | 500m - 1500m |
BB | AQ | 500m - 1500m |
BB | AR | 500m - 1500m |
BB | AS | 500m - 1500m |
BB | AT | 500m - 1500m |
BB | AX | 500m - 1500m |
BB | AY | 500m - 1500m |
BB | AZ | 500m - 1500m |
BB | BD | 500m - 1500m |
BB | BE | 500m - 1500m |
BB | BF | 500m - 1500m |
BB | BR | 500m - 1500m |
BB | BS | 500m - 1500m |
BB | BT | 500m - 1500m |
BB | BU | 500m - 1500m |
BB | BV | 500m - 1500m |
BB | BW | 500m - 1500m |
BB | BX | 500m - 1500m |
BB | BY | 500m - 1500m |
BB | BZ | 500m - 1500m |
BC | AL | 500m - 1500m |
BC | AM | 500m - 1500m |
BC | AN | 500m - 1500m |
BC | AO | 500m - 1500m |
BC | AP | 500m - 1500m |
BC | AQ | 500m - 1500m |
BC | AR | 500m - 1500m |
BC | AS | 500m - 1500m |
BC | AT | 500m - 1500m |
BC | AX | 500m - 1500m |
BC | AY | 500m - 1500m |
BC | AZ | 500m - 1500m |
BC | BD | 500m - 1500m |
BC | BE | 500m - 1500m |
BC | BF | 500m - 1500m |
BC | BR | 500m - 1500m |
BC | BS | 500m - 1500m |
BC | BT | 500m - 1500m |
BC | BU | 500m - 1500m |
BC | BV | 500m - 1500m |
BC | BW | 500m - 1500m |
BC | BX | 500m - 1500m |
BC | BY | 500m - 1500m |
BC | BZ | 500m - 1500m |
BD | AO | 500m - 1500m |
BD | AP | 500m - 1500m |
BD | AQ | 500m - 1500m |
BD | AR | 500m - 1500m |
BD | AS | 500m - 1500m |
BD | AT | 500m - 1500m |
BD | AU | 500m - 1500m |
BD | AV | 500m - 1500m |
BD | AW | 500m - 1500m |
BD | BA | 500m - 1500m |
BD | BB | 500m - 1500m |
BD | BC | 500m - 1500m |
BD | BG | 500m - 1500m |
BD | BH | 500m - 1500m |
BD | BI | 500m - 1500m |
BD | BU | 500m - 1500m |
BD | BV | 500m - 1500m |
BD | BW | 500m - 1500m |
BD | BX | 500m - 1500m |
BD | BY | 500m - 1500m |
BD | BZ | 500m - 1500m |
BD | CA | 500m - 1500m |
BD | CB | 500m - 1500m |
BD | CC | 500m - 1500m |
BE | AO | 500m - 1500m |
BE | AP | 500m - 1500m |
BE | AQ | 500m - 1500m |
BE | AR | 500m - 1500m |
BE | AS | 500m - 1500m |
BE | AT | 500m - 1500m |
BE | AU | 500m - 1500m |
BE | AV | 500m - 1500m |
BE | AW | 500m - 1500m |
BE | BA | 500m - 1500m |
BE | BB | 500m - 1500m |
BE | BC | 500m - 1500m |
BE | BG | 500m - 1500m |
BE | BH | 500m - 1500m |
BE | BI | 500m - 1500m |
BE | BU | 500m - 1500m |
BE | BV | 500m - 1500m |
BE | BW | 500m - 1500m |
BE | BX | 500m - 1500m |
BE | BY | 500m - 1500m |
BE | BZ | 500m - 1500m |
BE | CA | 500m - 1500m |
BE | CB | 500m - 1500m |
BE | CC | 500m - 1500m |
BF | AO | 500m - 1500m |
BF | AP | 500m - 1500m |
BF | AQ | 500m - 1500m |
BF | AR | 500m - 1500m |
BF | AS | 500m - 1500m |
BF | AT | 500m - 1500m |
BF | AU | 500m - 1500m |
BF | AV | 500m - 1500m |
BF | AW | 500m - 1500m |
BF | BA | 500m - 1500m |
BF | BB | 500m - 1500m |
BF | BC | 500m - 1500m |
BF | BG | 500m - 1500m |
BF | BH | 500m - 1500m |
BF | BI | 500m - 1500m |
BF | BU | 500m - 1500m |
BF | BV | 500m - 1500m |
BF | BW | 500m - 1500m |
BF | BX | 500m - 1500m |
BF | BY | 500m - 1500m |
BF | BZ | 500m - 1500m |
BF | CA | 500m - 1500m |
BF | CB | 500m - 1500m |
BF | CC | 500m - 1500m |
BG | AR | 500m - 1500m |
BG | AS | 500m - 1500m |
BG | AT | 500m - 1500m |
BG | AU | 500m - 1500m |
BG | AV | 500m - 1500m |
BG | AW | 500m - 1500m |
BG | BD | 500m - 1500m |
BG | BE | 500m - 1500m |
BG | BF | 500m - 1500m |
BG | BX | 500m - 1500m |
BG | BY | 500m - 1500m |
BG | BZ | 500m - 1500m |
BG | CA | 500m - 1500m |
BG | CB | 500m - 1500m |
BG | CC | 500m - 1500m |
BH | AR | 500m - 1500m |
BH | AS | 500m - 1500m |
BH | AT | 500m - 1500m |
BH | AU | 500m - 1500m |
BH | AV | 500m - 1500m |
BH | AW | 500m - 1500m |
BH | BD | 500m - 1500m |
BH | BE | 500m - 1500m |
BH | BF | 500m - 1500m |
BH | BX | 500m - 1500m |
BH | BY | 500m - 1500m |
BH | BZ | 500m - 1500m |
BH | CA | 500m - 1500m |
BH | CB | 500m - 1500m |
BH | CC | 500m - 1500m |
BI | AR | 500m - 1500m |
BI | AS | 500m - 1500m |
BI | AT | 500m - 1500m |
BI | AU | 500m - 1500m |
BI | AV | 500m - 1500m |
BI | AW | 500m - 1500m |
BI | BD | 500m - 1500m |
BI | BE | 500m - 1500m |
BI | BF | 500m - 1500m |
BI | BX | 500m - 1500m |
BI | BY | 500m - 1500m |
BI | BZ | 500m - 1500m |
BI | CA | 500m - 1500m |
BI | CB | 500m - 1500m |
BI | CC | 500m - 1500m |
BJ | BL | 500m - 1500m |
BJ | BM | 500m - 1500m |
BJ | BN | 500m - 1500m |
BJ | CG | 500m - 1500m |
BJ | CH | 500m - 1500m |
BJ | CI | 500m - 1500m |
BJ | CJ | 500m - 1500m |
BJ | CK | 500m - 1500m |
BJ | CL | 500m - 1500m |
BJ | CM | 500m - 1500m |
BJ | CN | 500m - 1500m |
BJ | CO | 500m - 1500m |
BK | BL | 500m - 1500m |
BK | BM | 500m - 1500m |
BK | BN | 500m - 1500m |
BK | CG | 500m - 1500m |
BK | CH | 500m - 1500m |
BK | CI | 500m - 1500m |
BK | CJ | 500m - 1500m |
BK | CK | 500m - 1500m |
BK | CL | 500m - 1500m |
BK | CM | 500m - 1500m |
BK | CN | 500m - 1500m |
BK | CO | 500m - 1500m |
BL | BJ | 500m - 1500m |
BL | BK | 500m - 1500m |
BL | BO | 500m - 1500m |
BL | BP | 500m - 1500m |
BL | BQ | 500m - 1500m |
BL | CJ | 500m - 1500m |
BL | CK | 500m - 1500m |
BL | CL | 500m - 1500m |
BL | CM | 500m - 1500m |
BL | CN | 500m - 1500m |
BL | CO | 500m - 1500m |
BL | CP | 500m - 1500m |
BL | CQ | 500m - 1500m |
BL | CR | 500m - 1500m |
BM | BJ | 500m - 1500m |
BM | BK | 500m - 1500m |
BM | BO | 500m - 1500m |
BM | BP | 500m - 1500m |
BM | BQ | 500m - 1500m |
BM | CJ | 500m - 1500m |
BM | CK | 500m - 1500m |
BM | CL | 500m - 1500m |
BM | CM | 500m - 1500m |
BM | CN | 500m - 1500m |
BM | CO | 500m - 1500m |
BM | CP | 500m - 1500m |
BM | CQ | 500m - 1500m |
BM | CR | 500m - 1500m |
BN | BJ | 500m - 1500m |
BN | BK | 500m - 1500m |
BN | BO | 500m - 1500m |
BN | BP | 500m - 1500m |
BN | BQ | 500m - 1500m |
BN | CJ | 500m - 1500m |
BN | CK | 500m - 1500m |
BN | CL | 500m - 1500m |
BN | CM | 500m - 1500m |
BN | CN | 500m - 1500m |
BN | CO | 500m - 1500m |
BN | CP | 500m - 1500m |
BN | CQ | 500m - 1500m |
BN | CR | 500m - 1500m |
BO | BL | 500m - 1500m |
BO | BM | 500m - 1500m |
BO | BN | 500m - 1500m |
BO | CM | 500m - 1500m |
BO | CN | 500m - 1500m |
BO | CO | 500m - 1500m |
BO | CP | 500m - 1500m |
BO | CQ | 500m - 1500m |
BO | CR | 500m - 1500m |
BP | BL | 500m - 1500m |
BP | BM | 500m - 1500m |
BP | BN | 500m - 1500m |
BP | CM | 500m - 1500m |
BP | CN | 500m - 1500m |
BP | CO | 500m - 1500m |
BP | CP | 500m - 1500m |
BP | CQ | 500m - 1500m |
BP | CR | 500m - 1500m |
BQ | BL | 500m - 1500m |
BQ | BM | 500m - 1500m |
BQ | BN | 500m - 1500m |
BQ | CM | 500m - 1500m |
BQ | CN | 500m - 1500m |
BQ | CO | 500m - 1500m |
BQ | CP | 500m - 1500m |
BQ | CQ | 500m - 1500m |
BQ | CR | 500m - 1500m |
BR | AX | 500m - 1500m |
BR | AY | 500m - 1500m |
BR | AZ | 500m - 1500m |
BR | BA | 500m - 1500m |
BR | BB | 500m - 1500m |
BR | BC | 500m - 1500m |
BR | BU | 500m - 1500m |
BR | BV | 500m - 1500m |
BR | BW | 500m - 1500m |
BR | CS | 500m - 1500m |
BR | CT | 500m - 1500m |
BR | CU | 500m - 1500m |
BS | AX | 500m - 1500m |
BS | AY | 500m - 1500m |
BS | AZ | 500m - 1500m |
BS | BA | 500m - 1500m |
BS | BB | 500m - 1500m |
BS | BC | 500m - 1500m |
BS | BU | 500m - 1500m |
BS | BV | 500m - 1500m |
BS | BW | 500m - 1500m |
BS | CS | 500m - 1500m |
BS | CT | 500m - 1500m |
BS | CU | 500m - 1500m |
BT | AX | 500m - 1500m |
BT | AY | 500m - 1500m |
BT | AZ | 500m - 1500m |
BT | BA | 500m - 1500m |
BT | BB | 500m - 1500m |
BT | BC | 500m - 1500m |
BT | BU | 500m - 1500m |
BT | BV | 500m - 1500m |
BT | BW | 500m - 1500m |
BT | CS | 500m - 1500m |
BT | CT | 500m - 1500m |
BT | CU | 500m - 1500m |
BU | AX | 500m - 1500m |
BU | AY | 500m - 1500m |
BU | AZ | 500m - 1500m |
BU | BA | 500m - 1500m |
BU | BB | 500m - 1500m |
BU | BC | 500m - 1500m |
BU | BD | 500m - 1500m |
BU | BE | 500m - 1500m |
BU | BF | 500m - 1500m |
BU | BR | 500m - 1500m |
BU | BS | 500m - 1500m |
BU | BT | 500m - 1500m |
BU | BX | 500m - 1500m |
BU | BY | 500m - 1500m |
BU | BZ | 500m - 1500m |
BU | CS | 500m - 1500m |
BU | CT | 500m - 1500m |
BU | CU | 500m - 1500m |
BU | CV | 500m - 1500m |
BU | CW | 500m - 1500m |
BU | CX | 500m - 1500m |
BV | AX | 500m - 1500m |
BV | AY | 500m - 1500m |
BV | AZ | 500m - 1500m |
BV | BA | 500m - 1500m |
BV | BB | 500m - 1500m |
BV | BC | 500m - 1500m |
BV | BD | 500m - 1500m |
BV | BE | 500m - 1500m |
BV | BF | 500m - 1500m |
BV | BR | 500m - 1500m |
BV | BS | 500m - 1500m |
BV | BT | 500m - 1500m |
BV | BX | 500m - 1500m |
BV | BY | 500m - 1500m |
BV | BZ | 500m - 1500m |
BV | CS | 500m - 1500m |
BV | CT | 500m - 1500m |
BV | CU | 500m - 1500m |
BV | CV | 500m - 1500m |
BV | CW | 500m - 1500m |
BV | CX | 500m - 1500m |
BW | AX | 500m - 1500m |
BW | AY | 500m - 1500m |
BW | AZ | 500m - 1500m |
BW | BA | 500m - 1500m |
BW | BB | 500m - 1500m |
BW | BC | 500m - 1500m |
BW | BD | 500m - 1500m |
BW | BE | 500m - 1500m |
BW | BF | 500m - 1500m |
BW | BR | 500m - 1500m |
BW | BS | 500m - 1500m |
BW | BT | 500m - 1500m |
BW | BX | 500m - 1500m |
BW | BY | 500m - 1500m |
BW | BZ | 500m - 1500m |
BW | CS | 500m - 1500m |
BW | CT | 500m - 1500m |
BW | CU | 500m - 1500m |
BW | CV | 500m - 1500m |
BW | CW | 500m - 1500m |
BW | CX | 500m - 1500m |
BX | BA | 500m - 1500m |
BX | BB | 500m - 1500m |
BX | BC | 500m - 1500m |
BX | BD | 500m - 1500m |
BX | BE | 500m - 1500m |
BX | BF | 500m - 1500m |
BX | BG | 500m - 1500m |
BX | BH | 500m - 1500m |
BX | BI | 500m - 1500m |
BX | BU | 500m - 1500m |
BX | BV | 500m - 1500m |
BX | BW | 500m - 1500m |
BX | CA | 500m - 1500m |
BX | CB | 500m - 1500m |
BX | CC | 500m - 1500m |
BX | CS | 500m - 1500m |
BX | CT | 500m - 1500m |
BX | CU | 500m - 1500m |
BX | CV | 500m - 1500m |
BX | CW | 500m - 1500m |
BX | CX | 500m - 1500m |
BX | CY | 500m - 1500m |
BX | CZ | 500m - 1500m |
BX | DA | 500m - 1500m |
BY | BA | 500m - 1500m |
BY | BB | 500m - 1500m |
BY | BC | 500m - 1500m |
BY | BD | 500m - 1500m |
BY | BE | 500m - 1500m |
BY | BF | 500m - 1500m |
BY | BG | 500m - 1500m |
BY | BH | 500m - 1500m |
BY | BI | 500m - 1500m |
BY | BU | 500m - 1500m |
BY | BV | 500m - 1500m |
BY | BW | 500m - 1500m |
BY | CA | 500m - 1500m |
BY | CB | 500m - 1500m |
BY | CC | 500m - 1500m |
BY | CS | 500m - 1500m |
BY | CT | 500m - 1500m |
BY | CU | 500m - 1500m |
BY | CV | 500m - 1500m |
BY | CW | 500m - 1500m |
BY | CX | 500m - 1500m |
BY | CY | 500m - 1500m |
BY | CZ | 500m - 1500m |
BY | DA | 500m - 1500m |
BZ | BA | 500m - 1500m |
BZ | BB | 500m - 1500m |
BZ | BC | 500m - 1500m |
BZ | BD | 500m - 1500m |
BZ | BE | 500m - 1500m |
BZ | BF | 500m - 1500m |
BZ | BG | 500m - 1500m |
BZ | BH | 500m - 1500m |
BZ | BI | 500m - 1500m |
BZ | BU | 500m - 1500m |
BZ | BV | 500m - 1500m |
BZ | BW | 500m - 1500m |
BZ | CA | 500m - 1500m |
BZ | CB | 500m - 1500m |
BZ | CC | 500m - 1500m |
BZ | CS | 500m - 1500m |
BZ | CT | 500m - 1500m |
BZ | CU | 500m - 1500m |
BZ | CV | 500m - 1500m |
BZ | CW | 500m - 1500m |
BZ | CX | 500m - 1500m |
BZ | CY | 500m - 1500m |
BZ | CZ | 500m - 1500m |
BZ | DA | 500m - 1500m |
CA | BD | 500m - 1500m |
CA | BE | 500m - 1500m |
CA | BF | 500m - 1500m |
CA | BG | 500m - 1500m |
CA | BH | 500m - 1500m |
CA | BI | 500m - 1500m |
CA | BX | 500m - 1500m |
CA | BY | 500m - 1500m |
CA | BZ | 500m - 1500m |
CA | CV | 500m - 1500m |
CA | CW | 500m - 1500m |
CA | CX | 500m - 1500m |
CA | CY | 500m - 1500m |
CA | CZ | 500m - 1500m |
CA | DA | 500m - 1500m |
CA | DB | 500m - 1500m |
CA | DC | 500m - 1500m |
CA | DD | 500m - 1500m |
CB | BD | 500m - 1500m |
CB | BE | 500m - 1500m |
CB | BF | 500m - 1500m |
CB | BG | 500m - 1500m |
CB | BH | 500m - 1500m |
CB | BI | 500m - 1500m |
CB | BX | 500m - 1500m |
CB | BY | 500m - 1500m |
CB | BZ | 500m - 1500m |
CB | CV | 500m - 1500m |
CB | CW | 500m - 1500m |
CB | CX | 500m - 1500m |
CB | CY | 500m - 1500m |
CB | CZ | 500m - 1500m |
CB | DA | 500m - 1500m |
CB | DB | 500m - 1500m |
CB | DC | 500m - 1500m |
CB | DD | 500m - 1500m |
CC | BD | 500m - 1500m |
CC | BE | 500m - 1500m |
CC | BF | 500m - 1500m |
CC | BG | 500m - 1500m |
CC | BH | 500m - 1500m |
CC | BI | 500m - 1500m |
CC | BX | 500m - 1500m |
CC | BY | 500m - 1500m |
CC | BZ | 500m - 1500m |
CC | CV | 500m - 1500m |
CC | CW | 500m - 1500m |
CC | CX | 500m - 1500m |
CC | CY | 500m - 1500m |
CC | CZ | 500m - 1500m |
CC | DA | 500m - 1500m |
CC | DB | 500m - 1500m |
CC | DC | 500m - 1500m |
CC | DD | 500m - 1500m |
CD | CG | 500m - 1500m |
CD | CH | 500m - 1500m |
CD | CI | 500m - 1500m |
CD | DH | 500m - 1500m |
CD | DI | 500m - 1500m |
CD | DJ | 500m - 1500m |
CD | DK | 500m - 1500m |
CD | DL | 500m - 1500m |
CD | DM | 500m - 1500m |
CE | CG | 500m - 1500m |
CE | CH | 500m - 1500m |
CE | CI | 500m - 1500m |
CE | DH | 500m - 1500m |
CE | DI | 500m - 1500m |
CE | DJ | 500m - 1500m |
CE | DK | 500m - 1500m |
CE | DL | 500m - 1500m |
CE | DM | 500m - 1500m |
CF | CG | 500m - 1500m |
CF | CH | 500m - 1500m |
CF | CI | 500m - 1500m |
CF | DH | 500m - 1500m |
CF | DI | 500m - 1500m |
CF | DJ | 500m - 1500m |
CF | DK | 500m - 1500m |
CF | DL | 500m - 1500m |
CF | DM | 500m - 1500m |
CG | BJ | 500m - 1500m |
CG | BK | 500m - 1500m |
CG | CD | 500m - 1500m |
CG | CE | 500m - 1500m |
CG | CF | 500m - 1500m |
CG | CJ | 500m - 1500m |
CG | CK | 500m - 1500m |
CG | CL | 500m - 1500m |
CG | DK | 500m - 1500m |
CG | DL | 500m - 1500m |
CG | DM | 500m - 1500m |
CG | DN | 500m - 1500m |
CG | DO | 500m - 1500m |
CG | DP | 500m - 1500m |
CH | BJ | 500m - 1500m |
CH | BK | 500m - 1500m |
CH | CD | 500m - 1500m |
CH | CE | 500m - 1500m |
CH | CF | 500m - 1500m |
CH | CJ | 500m - 1500m |
CH | CK | 500m - 1500m |
CH | CL | 500m - 1500m |
CH | DK | 500m - 1500m |
CH | DL | 500m - 1500m |
CH | DM | 500m - 1500m |
CH | DN | 500m - 1500m |
CH | DO | 500m - 1500m |
CH | DP | 500m - 1500m |
CI | BJ | 500m - 1500m |
CI | BK | 500m - 1500m |
CI | CD | 500m - 1500m |
CI | CE | 500m - 1500m |
CI | CF | 500m - 1500m |
CI | CJ | 500m - 1500m |
CI | CK | 500m - 1500m |
CI | CL | 500m - 1500m |
CI | DK | 500m - 1500m |
CI | DL | 500m - 1500m |
CI | DM | 500m - 1500m |
CI | DN | 500m - 1500m |
CI | DO | 500m - 1500m |
CI | DP | 500m - 1500m |
CJ | BJ | 500m - 1500m |
CJ | BK | 500m - 1500m |
CJ | BL | 500m - 1500m |
CJ | BM | 500m - 1500m |
CJ | BN | 500m - 1500m |
CJ | CG | 500m - 1500m |
CJ | CH | 500m - 1500m |
CJ | CI | 500m - 1500m |
CJ | CM | 500m - 1500m |
CJ | CN | 500m - 1500m |
CJ | CO | 500m - 1500m |
CJ | DN | 500m - 1500m |
CJ | DO | 500m - 1500m |
CJ | DP | 500m - 1500m |
CJ | DQ | 500m - 1500m |
CJ | DR | 500m - 1500m |
CJ | DS | 500m - 1500m |
CK | BJ | 500m - 1500m |
CK | BK | 500m - 1500m |
CK | BL | 500m - 1500m |
CK | BM | 500m - 1500m |
CK | BN | 500m - 1500m |
CK | CG | 500m - 1500m |
CK | CH | 500m - 1500m |
CK | CI | 500m - 1500m |
CK | CM | 500m - 1500m |
CK | CN | 500m - 1500m |
CK | CO | 500m - 1500m |
CK | DN | 500m - 1500m |
CK | DO | 500m - 1500m |
CK | DP | 500m - 1500m |
CK | DQ | 500m - 1500m |
CK | DR | 500m - 1500m |
CK | DS | 500m - 1500m |
CL | BJ | 500m - 1500m |
CL | BK | 500m - 1500m |
CL | BL | 500m - 1500m |
CL | BM | 500m - 1500m |
CL | BN | 500m - 1500m |
CL | CG | 500m - 1500m |
CL | CH | 500m - 1500m |
CL | CI | 500m - 1500m |
CL | CM | 500m - 1500m |
CL | CN | 500m - 1500m |
CL | CO | 500m - 1500m |
CL | DN | 500m - 1500m |
CL | DO | 500m - 1500m |
CL | DP | 500m - 1500m |
CL | DQ | 500m - 1500m |
CL | DR | 500m - 1500m |
CL | DS | 500m - 1500m |
CM | BJ | 500m - 1500m |
CM | BK | 500m - 1500m |
CM | BL | 500m - 1500m |
CM | BM | 500m - 1500m |
CM | BN | 500m - 1500m |
CM | BO | 500m - 1500m |
CM | BP | 500m - 1500m |
CM | BQ | 500m - 1500m |
CM | CJ | 500m - 1500m |
CM | CK | 500m - 1500m |
CM | CL | 500m - 1500m |
CM | CP | 500m - 1500m |
CM | CQ | 500m - 1500m |
CM | CR | 500m - 1500m |
CM | DN | 500m - 1500m |
CM | DO | 500m - 1500m |
CM | DP | 500m - 1500m |
CM | DQ | 500m - 1500m |
CM | DR | 500m - 1500m |
CM | DS | 500m - 1500m |
CM | DT | 500m - 1500m |
CM | DU | 500m - 1500m |
CM | DV | 500m - 1500m |
CN | BJ | 500m - 1500m |
CN | BK | 500m - 1500m |
CN | BL | 500m - 1500m |
CN | BM | 500m - 1500m |
CN | BN | 500m - 1500m |
CN | BO | 500m - 1500m |
CN | BP | 500m - 1500m |
CN | BQ | 500m - 1500m |
CN | CJ | 500m - 1500m |
CN | CK | 500m - 1500m |
CN | CL | 500m - 1500m |
CN | CP | 500m - 1500m |
CN | CQ | 500m - 1500m |
CN | CR | 500m - 1500m |
CN | DN | 500m - 1500m |
CN | DO | 500m - 1500m |
CN | DP | 500m - 1500m |
CN | DQ | 500m - 1500m |
CN | DR | 500m - 1500m |
CN | DS | 500m - 1500m |
CN | DT | 500m - 1500m |
CN | DU | 500m - 1500m |
CN | DV | 500m - 1500m |
CO | BJ | 500m - 1500m |
CO | BK | 500m - 1500m |
CO | BL | 500m - 1500m |
CO | BM | 500m - 1500m |
CO | BN | 500m - 1500m |
CO | BO | 500m - 1500m |
CO | BP | 500m - 1500m |
CO | BQ | 500m - 1500m |
CO | CJ | 500m - 1500m |
CO | CK | 500m - 1500m |
CO | CL | 500m - 1500m |
CO | CP | 500m - 1500m |
CO | CQ | 500m - 1500m |
CO | CR | 500m - 1500m |
CO | DN | 500m - 1500m |
CO | DO | 500m - 1500m |
CO | DP | 500m - 1500m |
CO | DQ | 500m - 1500m |
CO | DR | 500m - 1500m |
CO | DS | 500m - 1500m |
CO | DT | 500m - 1500m |
CO | DU | 500m - 1500m |
CO | DV | 500m - 1500m |
CP | BL | 500m - 1500m |
CP | BM | 500m - 1500m |
CP | BN | 500m - 1500m |
CP | BO | 500m - 1500m |
CP | BP | 500m - 1500m |
CP | BQ | 500m - 1500m |
CP | CM | 500m - 1500m |
CP | CN | 500m - 1500m |
CP | CO | 500m - 1500m |
CP | DQ | 500m - 1500m |
CP | DR | 500m - 1500m |
CP | DS | 500m - 1500m |
CP | DT | 500m - 1500m |
CP | DU | 500m - 1500m |
CP | DV | 500m - 1500m |
CQ | BL | 500m - 1500m |
CQ | BM | 500m - 1500m |
CQ | BN | 500m - 1500m |
CQ | BO | 500m - 1500m |
CQ | BP | 500m - 1500m |
CQ | BQ | 500m - 1500m |
CQ | CM | 500m - 1500m |
CQ | CN | 500m - 1500m |
CQ | CO | 500m - 1500m |
CQ | DQ | 500m - 1500m |
CQ | DR | 500m - 1500m |
CQ | DS | 500m - 1500m |
CQ | DT | 500m - 1500m |
CQ | DU | 500m - 1500m |
CQ | DV | 500m - 1500m |
CR | BL | 500m - 1500m |
CR | BM | 500m - 1500m |
CR | BN | 500m - 1500m |
CR | BO | 500m - 1500m |
CR | BP | 500m - 1500m |
CR | BQ | 500m - 1500m |
CR | CM | 500m - 1500m |
CR | CN | 500m - 1500m |
CR | CO | 500m - 1500m |
CR | DQ | 500m - 1500m |
CR | DR | 500m - 1500m |
CR | DS | 500m - 1500m |
CR | DT | 500m - 1500m |
CR | DU | 500m - 1500m |
CR | DV | 500m - 1500m |
CS | BR | 500m - 1500m |
CS | BS | 500m - 1500m |
CS | BT | 500m - 1500m |
CS | BU | 500m - 1500m |
CS | BV | 500m - 1500m |
CS | BW | 500m - 1500m |
CS | BX | 500m - 1500m |
CS | BY | 500m - 1500m |
CS | BZ | 500m - 1500m |
CS | CV | 500m - 1500m |
CS | CW | 500m - 1500m |
CS | CX | 500m - 1500m |
CT | BR | 500m - 1500m |
CT | BS | 500m - 1500m |
CT | BT | 500m - 1500m |
CT | BU | 500m - 1500m |
CT | BV | 500m - 1500m |
CT | BW | 500m - 1500m |
CT | BX | 500m - 1500m |
CT | BY | 500m - 1500m |
CT | BZ | 500m - 1500m |
CT | CV | 500m - 1500m |
CT | CW | 500m - 1500m |
CT | CX | 500m - 1500m |
CU | BR | 500m - 1500m |
CU | BS | 500m - 1500m |
CU | BT | 500m - 1500m |
CU | BU | 500m - 1500m |
CU | BV | 500m - 1500m |
CU | BW | 500m - 1500m |
CU | BX | 500m - 1500m |
CU | BY | 500m - 1500m |
CU | BZ | 500m - 1500m |
CU | CV | 500m - 1500m |
CU | CW | 500m - 1500m |
CU | CX | 500m - 1500m |
CV | BU | 500m - 1500m |
CV | BV | 500m - 1500m |
CV | BW | 500m - 1500m |
CV | BX | 500m - 1500m |
CV | BY | 500m - 1500m |
CV | BZ | 500m - 1500m |
CV | CA | 500m - 1500m |
CV | CB | 500m - 1500m |
CV | CC | 500m - 1500m |
CV | CS | 500m - 1500m |
CV | CT | 500m - 1500m |
CV | CU | 500m - 1500m |
CV | CY | 500m - 1500m |
CV | CZ | 500m - 1500m |
CV | DA | 500m - 1500m |
CW | BU | 500m - 1500m |
CW | BV | 500m - 1500m |
CW | BW | 500m - 1500m |
CW | BX | 500m - 1500m |
CW | BY | 500m - 1500m |
CW | BZ | 500m - 1500m |
CW | CA | 500m - 1500m |
CW | CB | 500m - 1500m |
CW | CC | 500m - 1500m |
CW | CS | 500m - 1500m |
CW | CT | 500m - 1500m |
CW | CU | 500m - 1500m |
CW | CY | 500m - 1500m |
CW | CZ | 500m - 1500m |
CW | DA | 500m - 1500m |
CX | BU | 500m - 1500m |
CX | BV | 500m - 1500m |
CX | BW | 500m - 1500m |
CX | BX | 500m - 1500m |
CX | BY | 500m - 1500m |
CX | BZ | 500m - 1500m |
CX | CA | 500m - 1500m |
CX | CB | 500m - 1500m |
CX | CC | 500m - 1500m |
CX | CS | 500m - 1500m |
CX | CT | 500m - 1500m |
CX | CU | 500m - 1500m |
CX | CY | 500m - 1500m |
CX | CZ | 500m - 1500m |
CX | DA | 500m - 1500m |
CY | BX | 500m - 1500m |
CY | BY | 500m - 1500m |
CY | BZ | 500m - 1500m |
CY | CA | 500m - 1500m |
CY | CB | 500m - 1500m |
CY | CC | 500m - 1500m |
CY | CV | 500m - 1500m |
CY | CW | 500m - 1500m |
CY | CX | 500m - 1500m |
CY | DB | 500m - 1500m |
CY | DC | 500m - 1500m |
CY | DD | 500m - 1500m |
CZ | BX | 500m - 1500m |
CZ | BY | 500m - 1500m |
CZ | BZ | 500m - 1500m |
CZ | CA | 500m - 1500m |
CZ | CB | 500m - 1500m |
CZ | CC | 500m - 1500m |
CZ | CV | 500m - 1500m |
CZ | CW | 500m - 1500m |
CZ | CX | 500m - 1500m |
CZ | DB | 500m - 1500m |
CZ | DC | 500m - 1500m |
CZ | DD | 500m - 1500m |
DA | BX | 500m - 1500m |
DA | BY | 500m - 1500m |
DA | BZ | 500m - 1500m |
DA | CA | 500m - 1500m |
DA | CB | 500m - 1500m |
DA | CC | 500m - 1500m |
DA | CV | 500m - 1500m |
DA | CW | 500m - 1500m |
DA | CX | 500m - 1500m |
DA | DB | 500m - 1500m |
DA | DC | 500m - 1500m |
DA | DD | 500m - 1500m |
DB | CA | 500m - 1500m |
DB | CB | 500m - 1500m |
DB | CC | 500m - 1500m |
DB | CY | 500m - 1500m |
DB | CZ | 500m - 1500m |
DB | DA | 500m - 1500m |
DB | DE | 500m - 1500m |
DB | DF | 500m - 1500m |
DB | DG | 500m - 1500m |
DC | CA | 500m - 1500m |
DC | CB | 500m - 1500m |
DC | CC | 500m - 1500m |
DC | CY | 500m - 1500m |
DC | CZ | 500m - 1500m |
DC | DA | 500m - 1500m |
DC | DE | 500m - 1500m |
DC | DF | 500m - 1500m |
DC | DG | 500m - 1500m |
DD | CA | 500m - 1500m |
DD | CB | 500m - 1500m |
DD | CC | 500m - 1500m |
DD | CY | 500m - 1500m |
DD | CZ | 500m - 1500m |
DD | DA | 500m - 1500m |
DD | DE | 500m - 1500m |
DD | DF | 500m - 1500m |
DD | DG | 500m - 1500m |
DE | DB | 500m - 1500m |
DE | DC | 500m - 1500m |
DE | DD | 500m - 1500m |
DE | DH | 500m - 1500m |
DE | DI | 500m - 1500m |
DE | DJ | 500m - 1500m |
DE | DW | 500m - 1500m |
DE | DX | 500m - 1500m |
DE | DY | 500m - 1500m |
DF | DB | 500m - 1500m |
DF | DC | 500m - 1500m |
DF | DD | 500m - 1500m |
DF | DH | 500m - 1500m |
DF | DI | 500m - 1500m |
DF | DJ | 500m - 1500m |
DF | DW | 500m - 1500m |
DF | DX | 500m - 1500m |
DF | DY | 500m - 1500m |
DG | DB | 500m - 1500m |
DG | DC | 500m - 1500m |
DG | DD | 500m - 1500m |
DG | DH | 500m - 1500m |
DG | DI | 500m - 1500m |
DG | DJ | 500m - 1500m |
DG | DW | 500m - 1500m |
DG | DX | 500m - 1500m |
DG | DY | 500m - 1500m |
DH | CD | 500m - 1500m |
DH | CE | 500m - 1500m |
DH | CF | 500m - 1500m |
DH | DE | 500m - 1500m |
DH | DF | 500m - 1500m |
DH | DG | 500m - 1500m |
DH | DK | 500m - 1500m |
DH | DL | 500m - 1500m |
DH | DM | 500m - 1500m |
DH | DW | 500m - 1500m |
DH | DX | 500m - 1500m |
DH | DY | 500m - 1500m |
DH | DZ | 500m - 1500m |
DH | EA | 500m - 1500m |
DH | EB | 500m - 1500m |
DI | CD | 500m - 1500m |
DI | CE | 500m - 1500m |
DI | CF | 500m - 1500m |
DI | DE | 500m - 1500m |
DI | DF | 500m - 1500m |
DI | DG | 500m - 1500m |
DI | DK | 500m - 1500m |
DI | DL | 500m - 1500m |
DI | DM | 500m - 1500m |
DI | DW | 500m - 1500m |
DI | DX | 500m - 1500m |
DI | DY | 500m - 1500m |
DI | DZ | 500m - 1500m |
DI | EA | 500m - 1500m |
DI | EB | 500m - 1500m |
DJ | CD | 500m - 1500m |
DJ | CE | 500m - 1500m |
DJ | CF | 500m - 1500m |
DJ | DE | 500m - 1500m |
DJ | DF | 500m - 1500m |
DJ | DG | 500m - 1500m |
DJ | DK | 500m - 1500m |
DJ | DL | 500m - 1500m |
DJ | DM | 500m - 1500m |
DJ | DW | 500m - 1500m |
DJ | DX | 500m - 1500m |
DJ | DY | 500m - 1500m |
DJ | DZ | 500m - 1500m |
DJ | EA | 500m - 1500m |
DJ | EB | 500m - 1500m |
DK | CD | 500m - 1500m |
DK | CE | 500m - 1500m |
DK | CF | 500m - 1500m |
DK | CG | 500m - 1500m |
DK | CH | 500m - 1500m |
DK | CI | 500m - 1500m |
DK | DH | 500m - 1500m |
DK | DI | 500m - 1500m |
DK | DJ | 500m - 1500m |
DK | DN | 500m - 1500m |
DK | DO | 500m - 1500m |
DK | DP | 500m - 1500m |
DK | DZ | 500m - 1500m |
DK | EA | 500m - 1500m |
DK | EB | 500m - 1500m |
DK | EC | 500m - 1500m |
DK | ED | 500m - 1500m |
DL | CD | 500m - 1500m |
DL | CE | 500m - 1500m |
DL | CF | 500m - 1500m |
DL | CG | 500m - 1500m |
DL | CH | 500m - 1500m |
DL | CI | 500m - 1500m |
DL | DH | 500m - 1500m |
DL | DI | 500m - 1500m |
DL | DJ | 500m - 1500m |
DL | DN | 500m - 1500m |
DL | DO | 500m - 1500m |
DL | DP | 500m - 1500m |
DL | DZ | 500m - 1500m |
DL | EA | 500m - 1500m |
DL | EB | 500m - 1500m |
DL | EC | 500m - 1500m |
DL | ED | 500m - 1500m |
DM | CD | 500m - 1500m |
DM | CE | 500m - 1500m |
DM | CF | 500m - 1500m |
DM | CG | 500m - 1500m |
DM | CH | 500m - 1500m |
DM | CI | 500m - 1500m |
DM | DH | 500m - 1500m |
DM | DI | 500m - 1500m |
DM | DJ | 500m - 1500m |
DM | DN | 500m - 1500m |
DM | DO | 500m - 1500m |
DM | DP | 500m - 1500m |
DM | DZ | 500m - 1500m |
DM | EA | 500m - 1500m |
DM | EB | 500m - 1500m |
DM | EC | 500m - 1500m |
DM | ED | 500m - 1500m |
DN | CG | 500m - 1500m |
DN | CH | 500m - 1500m |
DN | CI | 500m - 1500m |
DN | CJ | 500m - 1500m |
DN | CK | 500m - 1500m |
DN | CL | 500m - 1500m |
DN | CM | 500m - 1500m |
DN | CN | 500m - 1500m |
DN | CO | 500m - 1500m |
DN | DK | 500m - 1500m |
DN | DL | 500m - 1500m |
DN | DM | 500m - 1500m |
DN | DQ | 500m - 1500m |
DN | DR | 500m - 1500m |
DN | DS | 500m - 1500m |
DN | EC | 500m - 1500m |
DN | ED | 500m - 1500m |
DN | EE | 500m - 1500m |
DN | EF | 500m - 1500m |
DN | EG | 500m - 1500m |
DN | EH | 500m - 1500m |
DN | EI | 500m - 1500m |
DN | EJ | 500m - 1500m |
DO | CG | 500m - 1500m |
DO | CH | 500m - 1500m |
DO | CI | 500m - 1500m |
DO | CJ | 500m - 1500m |
DO | CK | 500m - 1500m |
DO | CL | 500m - 1500m |
DO | CM | 500m - 1500m |
DO | CN | 500m - 1500m |
DO | CO | 500m - 1500m |
DO | DK | 500m - 1500m |
DO | DL | 500m - 1500m |
DO | DM | 500m - 1500m |
DO | DQ | 500m - 1500m |
DO | DR | 500m - 1500m |
DO | DS | 500m - 1500m |
DO | EC | 500m - 1500m |
DO | ED | 500m - 1500m |
DO | EE | 500m - 1500m |
DO | EF | 500m - 1500m |
DO | EG | 500m - 1500m |
DO | EH | 500m - 1500m |
DO | EI | 500m - 1500m |
DO | EJ | 500m - 1500m |
DP | CG | 500m - 1500m |
DP | CH | 500m - 1500m |
DP | CI | 500m - 1500m |
DP | CJ | 500m - 1500m |
DP | CK | 500m - 1500m |
DP | CL | 500m - 1500m |
DP | CM | 500m - 1500m |
DP | CN | 500m - 1500m |
DP | CO | 500m - 1500m |
DP | DK | 500m - 1500m |
DP | DL | 500m - 1500m |
DP | DM | 500m - 1500m |
DP | DQ | 500m - 1500m |
DP | DR | 500m - 1500m |
DP | DS | 500m - 1500m |
DP | EC | 500m - 1500m |
DP | ED | 500m - 1500m |
DP | EE | 500m - 1500m |
DP | EF | 500m - 1500m |
DP | EG | 500m - 1500m |
DP | EH | 500m - 1500m |
DP | EI | 500m - 1500m |
DP | EJ | 500m - 1500m |
DQ | CJ | 500m - 1500m |
DQ | CK | 500m - 1500m |
DQ | CL | 500m - 1500m |
DQ | CM | 500m - 1500m |
DQ | CN | 500m - 1500m |
DQ | CO | 500m - 1500m |
DQ | CP | 500m - 1500m |
DQ | CQ | 500m - 1500m |
DQ | CR | 500m - 1500m |
DQ | DN | 500m - 1500m |
DQ | DO | 500m - 1500m |
DQ | DP | 500m - 1500m |
DQ | DT | 500m - 1500m |
DQ | DU | 500m - 1500m |
DQ | DV | 500m - 1500m |
DQ | EE | 500m - 1500m |
DQ | EF | 500m - 1500m |
DQ | EG | 500m - 1500m |
DQ | EH | 500m - 1500m |
DQ | EI | 500m - 1500m |
DQ | EJ | 500m - 1500m |
DQ | EK | 500m - 1500m |
DQ | EL | 500m - 1500m |
DQ | EM | 500m - 1500m |
DR | CJ | 500m - 1500m |
DR | CK | 500m - 1500m |
DR | CL | 500m - 1500m |
DR | CM | 500m - 1500m |
DR | CN | 500m - 1500m |
DR | CO | 500m - 1500m |
DR | CP | 500m - 1500m |
DR | CQ | 500m - 1500m |
DR | CR | 500m - 1500m |
DR | DN | 500m - 1500m |
DR | DO | 500m - 1500m |
DR | DP | 500m - 1500m |
DR | DT | 500m - 1500m |
DR | DU | 500m - 1500m |
DR | DV | 500m - 1500m |
DR | EE | 500m - 1500m |
DR | EF | 500m - 1500m |
DR | EG | 500m - 1500m |
DR | EH | 500m - 1500m |
DR | EI | 500m - 1500m |
DR | EJ | 500m - 1500m |
DR | EK | 500m - 1500m |
DR | EL | 500m - 1500m |
DR | EM | 500m - 1500m |
DS | CJ | 500m - 1500m |
DS | CK | 500m - 1500m |
DS | CL | 500m - 1500m |
DS | CM | 500m - 1500m |
DS | CN | 500m - 1500m |
DS | CO | 500m - 1500m |
DS | CP | 500m - 1500m |
DS | CQ | 500m - 1500m |
DS | CR | 500m - 1500m |
DS | DN | 500m - 1500m |
DS | DO | 500m - 1500m |
DS | DP | 500m - 1500m |
DS | DT | 500m - 1500m |
DS | DU | 500m - 1500m |
DS | DV | 500m - 1500m |
DS | EE | 500m - 1500m |
DS | EF | 500m - 1500m |
DS | EG | 500m - 1500m |
DS | EH | 500m - 1500m |
DS | EI | 500m - 1500m |
DS | EJ | 500m - 1500m |
DS | EK | 500m - 1500m |
DS | EL | 500m - 1500m |
DS | EM | 500m - 1500m |
DT | CM | 500m - 1500m |
DT | CN | 500m - 1500m |
DT | CO | 500m - 1500m |
DT | CP | 500m - 1500m |
DT | CQ | 500m - 1500m |
DT | CR | 500m - 1500m |
DT | DQ | 500m - 1500m |
DT | DR | 500m - 1500m |
DT | DS | 500m - 1500m |
DT | EH | 500m - 1500m |
DT | EI | 500m - 1500m |
DT | EJ | 500m - 1500m |
DT | EK | 500m - 1500m |
DT | EL | 500m - 1500m |
DT | EM | 500m - 1500m |
DU | CM | 500m - 1500m |
DU | CN | 500m - 1500m |
DU | CO | 500m - 1500m |
DU | CP | 500m - 1500m |
DU | CQ | 500m - 1500m |
DU | CR | 500m - 1500m |
DU | DQ | 500m - 1500m |
DU | DR | 500m - 1500m |
DU | DS | 500m - 1500m |
DU | EH | 500m - 1500m |
DU | EI | 500m - 1500m |
DU | EJ | 500m - 1500m |
DU | EK | 500m - 1500m |
DU | EL | 500m - 1500m |
DU | EM | 500m - 1500m |
DV | CM | 500m - 1500m |
DV | CN | 500m - 1500m |
DV | CO | 500m - 1500m |
DV | CP | 500m - 1500m |
DV | CQ | 500m - 1500m |
DV | CR | 500m - 1500m |
DV | DQ | 500m - 1500m |
DV | DR | 500m - 1500m |
DV | DS | 500m - 1500m |
DV | EH | 500m - 1500m |
DV | EI | 500m - 1500m |
DV | EJ | 500m - 1500m |
DV | EK | 500m - 1500m |
DV | EL | 500m - 1500m |
DV | EM | 500m - 1500m |
DW | DE | 500m - 1500m |
DW | DF | 500m - 1500m |
DW | DG | 500m - 1500m |
DW | DH | 500m - 1500m |
DW | DI | 500m - 1500m |
DW | DJ | 500m - 1500m |
DW | DZ | 500m - 1500m |
DW | EA | 500m - 1500m |
DW | EB | 500m - 1500m |
DX | DE | 500m - 1500m |
DX | DF | 500m - 1500m |
DX | DG | 500m - 1500m |
DX | DH | 500m - 1500m |
DX | DI | 500m - 1500m |
DX | DJ | 500m - 1500m |
DX | DZ | 500m - 1500m |
DX | EA | 500m - 1500m |
DX | EB | 500m - 1500m |
DY | DE | 500m - 1500m |
DY | DF | 500m - 1500m |
DY | DG | 500m - 1500m |
DY | DH | 500m - 1500m |
DY | DI | 500m - 1500m |
DY | DJ | 500m - 1500m |
DY | DZ | 500m - 1500m |
DY | EA | 500m - 1500m |
DY | EB | 500m - 1500m |
DZ | DH | 500m - 1500m |
DZ | DI | 500m - 1500m |
DZ | DJ | 500m - 1500m |
DZ | DK | 500m - 1500m |
DZ | DL | 500m - 1500m |
DZ | DM | 500m - 1500m |
DZ | DW | 500m - 1500m |
DZ | DX | 500m - 1500m |
DZ | DY | 500m - 1500m |
DZ | EC | 500m - 1500m |
DZ | ED | 500m - 1500m |
EA | DH | 500m - 1500m |
EA | DI | 500m - 1500m |
EA | DJ | 500m - 1500m |
EA | DK | 500m - 1500m |
EA | DL | 500m - 1500m |
EA | DM | 500m - 1500m |
EA | DW | 500m - 1500m |
EA | DX | 500m - 1500m |
EA | DY | 500m - 1500m |
EA | EC | 500m - 1500m |
EA | ED | 500m - 1500m |
EB | DH | 500m - 1500m |
EB | DI | 500m - 1500m |
EB | DJ | 500m - 1500m |
EB | DK | 500m - 1500m |
EB | DL | 500m - 1500m |
EB | DM | 500m - 1500m |
EB | DW | 500m - 1500m |
EB | DX | 500m - 1500m |
EB | DY | 500m - 1500m |
EB | EC | 500m - 1500m |
EB | ED | 500m - 1500m |
EC | DK | 500m - 1500m |
EC | DL | 500m - 1500m |
EC | DM | 500m - 1500m |
EC | DN | 500m - 1500m |
EC | DO | 500m - 1500m |
EC | DP | 500m - 1500m |
EC | DZ | 500m - 1500m |
EC | EA | 500m - 1500m |
EC | EB | 500m - 1500m |
EC | EE | 500m - 1500m |
EC | EF | 500m - 1500m |
EC | EG | 500m - 1500m |
ED | DK | 500m - 1500m |
ED | DL | 500m - 1500m |
ED | DM | 500m - 1500m |
ED | DN | 500m - 1500m |
ED | DO | 500m - 1500m |
ED | DP | 500m - 1500m |
ED | DZ | 500m - 1500m |
ED | EA | 500m - 1500m |
ED | EB | 500m - 1500m |
ED | EE | 500m - 1500m |
ED | EF | 500m - 1500m |
ED | EG | 500m - 1500m |
EE | DN | 500m - 1500m |
EE | DO | 500m - 1500m |
EE | DP | 500m - 1500m |
EE | DQ | 500m - 1500m |
EE | DR | 500m - 1500m |
EE | DS | 500m - 1500m |
EE | EC | 500m - 1500m |
EE | ED | 500m - 1500m |
EE | EH | 500m - 1500m |
EE | EI | 500m - 1500m |
EE | EJ | 500m - 1500m |
EF | DN | 500m - 1500m |
EF | DO | 500m - 1500m |
EF | DP | 500m - 1500m |
EF | DQ | 500m - 1500m |
EF | DR | 500m - 1500m |
EF | DS | 500m - 1500m |
EF | EC | 500m - 1500m |
EF | ED | 500m - 1500m |
EF | EH | 500m - 1500m |
EF | EI | 500m - 1500m |
EF | EJ | 500m - 1500m |
EG | DN | 500m - 1500m |
EG | DO | 500m - 1500m |
EG | DP | 500m - 1500m |
EG | DQ | 500m - 1500m |
EG | DR | 500m - 1500m |
EG | DS | 500m - 1500m |
EG | EC | 500m - 1500m |
EG | ED | 500m - 1500m |
EG | EH | 500m - 1500m |
EG | EI | 500m - 1500m |
EG | EJ | 500m - 1500m |
EH | DN | 500m - 1500m |
EH | DO | 500m - 1500m |
EH | DP | 500m - 1500m |
EH | DQ | 500m - 1500m |
EH | DR | 500m - 1500m |
EH | DS | 500m - 1500m |
EH | DT | 500m - 1500m |
EH | DU | 500m - 1500m |
EH | DV | 500m - 1500m |
EH | EE | 500m - 1500m |
EH | EF | 500m - 1500m |
EH | EG | 500m - 1500m |
EH | EK | 500m - 1500m |
EH | EL | 500m - 1500m |
EH | EM | 500m - 1500m |
EI | DN | 500m - 1500m |
EI | DO | 500m - 1500m |
EI | DP | 500m - 1500m |
EI | DQ | 500m - 1500m |
EI | DR | 500m - 1500m |
EI | DS | 500m - 1500m |
EI | DT | 500m - 1500m |
EI | DU | 500m - 1500m |
EI | DV | 500m - 1500m |
EI | EE | 500m - 1500m |
EI | EF | 500m - 1500m |
EI | EG | 500m - 1500m |
EI | EK | 500m - 1500m |
EI | EL | 500m - 1500m |
EI | EM | 500m - 1500m |
EJ | DN | 500m - 1500m |
EJ | DO | 500m - 1500m |
EJ | DP | 500m - 1500m |
EJ | DQ | 500m - 1500m |
EJ | DR | 500m - 1500m |
EJ | DS | 500m - 1500m |
EJ | DT | 500m - 1500m |
EJ | DU | 500m - 1500m |
EJ | DV | 500m - 1500m |
EJ | EE | 500m - 1500m |
EJ | EF | 500m - 1500m |
EJ | EG | 500m - 1500m |
EJ | EK | 500m - 1500m |
EJ | EL | 500m - 1500m |
EJ | EM | 500m - 1500m |
EK | DQ | 500m - 1500m |
EK | DR | 500m - 1500m |
EK | DS | 500m - 1500m |
EK | DT | 500m - 1500m |
EK | DU | 500m - 1500m |
EK | DV | 500m - 1500m |
EK | EH | 500m - 1500m |
EK | EI | 500m - 1500m |
EK | EJ | 500m - 1500m |
EL | DQ | 500m - 1500m |
EL | DR | 500m - 1500m |
EL | DS | 500m - 1500m |
EL | DT | 500m - 1500m |
EL | DU | 500m - 1500m |
EL | DV | 500m - 1500m |
EL | EH | 500m - 1500m |
EL | EI | 500m - 1500m |
EL | EJ | 500m - 1500m |
EM | DQ | 500m - 1500m |
EM | DR | 500m - 1500m |
EM | DS | 500m - 1500m |
EM | DT | 500m - 1500m |
EM | DU | 500m - 1500m |
EM | DV | 500m - 1500m |
EM | EH | 500m - 1500m |
EM | EI | 500m - 1500m |
EM | EJ | 500m - 1500m |
You may notice that we have not been provided the coordinates of each
location. Not even the actual distance between locations is provided.
Rather, the interdistance between locations is given into categorized
ranges, named Interdistance class
. We discuss this
later.
In this section we are going to do some exploratory data analyses (EDA) on the previously-loaded datasets, so we can understand them better and get some insights.
We start with some basic plots showing CPT test registrations, for
the training
dataset. To improve interpretability, we have
highlighted with the dark step line the data for one pile location
(specifically location EK
).
# grays
<- "#2F2F2FFF"
gray_1 <- "#474747FF"
gray_2 <- "#DFDFDFFF"
gray_3 <- "#F7F7F7FF"
gray_4
# update default theme
<-
ggtheme theme_light() +
theme(
text = element_text(size = 8.25, color = gray_1),
plot.title = element_text(face = "bold", size = 8.25, hjust = 0.5),
axis.title = element_text(face = "bold", size = 8.25),
axis.text = element_text( size = 8.25, color = gray_2),
panel.grid.major = element_line(color = gray_3, size = 0.25),
panel.grid.minor = element_blank(),
axis.ticks = element_line(color = gray_2, size = 0.25),
axis.ticks.length = unit(.25, "cm"),
panel.border = element_rect(color = gray_2, size = 0.25),
strip.text = element_text(size = 8.25, color = gray_1),
legend.background = element_blank(),
plot.background = element_blank(),
panel.background = element_blank(),
strip.background = element_blank(),
legend.key = element_blank(),
plot.margin = margin(t = 5, r = 10, b = 5, l = 10)
)
# set theme
theme_set(ggtheme)
library(patchwork)
<- training %>%
training_EK filter(`Location ID` == "EK")
<- training %>%
plot1 ggplot(aes(`z [m]`, `qc [MPa]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_EK, aes(`z [m]`, `qc [MPa]`),
size = 1,
colour = "grey20",
alpha = 1) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 100)) +
theme(panel.grid.minor = element_blank())
<- training %>%
plot2 ggplot(aes(`z [m]`, `fs [MPa]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_EK, aes(`z [m]`, `fs [MPa]`),
size = 1,
colour = "grey20",
alpha = 1) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 2)) +
labs(x = "") +
theme(panel.grid.minor = element_blank())
<- training %>%
plot3 ggplot(aes(`z [m]`, `u2 [MPa]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_EK, aes(`z [m]`, `u2 [MPa]`),
size = 1,
colour = "grey20",
alpha = 1) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(-0.5, 0.5)) +
labs(x = "") +
theme(panel.grid.minor = element_blank())
+ plot2 + plot3 plot1
CPT test data for training
(location EK
with dark step line).
Next, we built similar graphs for the data related to pile installation.
<- training %>%
plot4 ggplot(aes(`z [m]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_EK, aes(`z [m]`, `Blowcount [Blows/m]`),
size = 1,
colour = "grey20",
alpha = 1) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank())
<- training %>%
plot5 ggplot(aes(`z [m]`, `Number of blows`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_EK, aes(`z [m]`, `Number of blows`),
size = 1,
colour = "grey20",
alpha = 1) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 2500)) +
labs(x = "") +
theme(panel.grid.minor = element_blank())
<- training %>%
plot6 ggplot(aes(`z [m]`, `Normalised ENTRHU [-]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_EK, aes(`z [m]`, `Normalised ENTRHU [-]`),
size = 1,
colour = "grey20",
alpha = 1) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 0.70)) +
labs(x = "") +
theme(panel.grid.minor = element_blank())
+ plot5 + plot6 plot4
Pile installation data for training
(location
EK
with dark step line).
interdistance
Now we try to explore interdistance
data, in order to
see if we can get an idea on the general layout or on the geometry of
the site. As we previously noted, the interdistance between locations is
provided in categories. Let’s see what these categories are.
<- interdistance %>%
interdistance mutate(`Interdistance class` = as_factor(`Interdistance class`))
as_tibble(levels(interdistance$`Interdistance class`))
## # A tibble: 5 x 1
## value
## <chr>
## 1 <500m
## 2 500m - 1500m
## 3 1500m - 3000m
## 4 3000m - 4500m
## 5 >4500m
We have five categories. Having the pile location data in this form
seems a bit unusual, since, for a project, we normally know the exact
locations where we expect pile foundations to be installed. This data
shortcoming most likely limits our ability to incorporate
interdistance
into our analysis or even to visualize it.
Nonetheless, we can try different visualization layouts.
We transform the data a bit so we can express
Interdistance class
in numerical terms.
<- interdistance %>%
interdistance mutate(`Interdistance cat` = case_when(`Interdistance class` == "<500m" ~ "A",
`Interdistance class` == "500m - 1500m" ~ "B",
`Interdistance class` == "1500m - 3000m" ~ "C",
`Interdistance class` == "3000m - 4500m" ~ "D",
`Interdistance class` == ">4500m" ~ "E")) %>%
mutate(`Interdistance num` = case_when(`Interdistance cat` == "A" ~ "1.0",
`Interdistance cat` == "B" ~ "0.8",
`Interdistance cat` == "C" ~ "0.6",
`Interdistance cat` == "D" ~ "0.4",
`Interdistance cat` == "E" ~ "0.2")) %>%
mutate(`Interdistance num` = as.double(`Interdistance num`))
kable(top_n(interdistance, 100),
digits = 3,
caption = "Interdistance data (edited).",
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6") %>%
scroll_box(height = "300px")
ID location 1 | ID location 2 | Interdistance class | Interdistance cat | Interdistance num |
---|---|---|---|---|
AA | AA | <500m | A | 1 |
AA | AB | <500m | A | 1 |
AA | AC | <500m | A | 1 |
AB | AA | <500m | A | 1 |
AB | AB | <500m | A | 1 |
AB | AC | <500m | A | 1 |
AC | AA | <500m | A | 1 |
AC | AB | <500m | A | 1 |
AC | AC | <500m | A | 1 |
AD | AD | <500m | A | 1 |
AD | AE | <500m | A | 1 |
AE | AD | <500m | A | 1 |
AE | AE | <500m | A | 1 |
AF | AF | <500m | A | 1 |
AF | AG | <500m | A | 1 |
AF | AH | <500m | A | 1 |
AG | AF | <500m | A | 1 |
AG | AG | <500m | A | 1 |
AG | AH | <500m | A | 1 |
AH | AF | <500m | A | 1 |
AH | AG | <500m | A | 1 |
AH | AH | <500m | A | 1 |
AI | AI | <500m | A | 1 |
AI | AJ | <500m | A | 1 |
AI | AK | <500m | A | 1 |
AJ | AI | <500m | A | 1 |
AJ | AJ | <500m | A | 1 |
AJ | AK | <500m | A | 1 |
AK | AI | <500m | A | 1 |
AK | AJ | <500m | A | 1 |
AK | AK | <500m | A | 1 |
AL | AL | <500m | A | 1 |
AL | AM | <500m | A | 1 |
AL | AN | <500m | A | 1 |
AM | AL | <500m | A | 1 |
AM | AM | <500m | A | 1 |
AM | AN | <500m | A | 1 |
AN | AL | <500m | A | 1 |
AN | AM | <500m | A | 1 |
AN | AN | <500m | A | 1 |
AO | AO | <500m | A | 1 |
AO | AP | <500m | A | 1 |
AO | AQ | <500m | A | 1 |
AP | AO | <500m | A | 1 |
AP | AP | <500m | A | 1 |
AP | AQ | <500m | A | 1 |
AQ | AO | <500m | A | 1 |
AQ | AP | <500m | A | 1 |
AQ | AQ | <500m | A | 1 |
AR | AR | <500m | A | 1 |
AR | AS | <500m | A | 1 |
AR | AT | <500m | A | 1 |
AS | AR | <500m | A | 1 |
AS | AS | <500m | A | 1 |
AS | AT | <500m | A | 1 |
AT | AR | <500m | A | 1 |
AT | AS | <500m | A | 1 |
AT | AT | <500m | A | 1 |
AU | AU | <500m | A | 1 |
AU | AV | <500m | A | 1 |
AU | AW | <500m | A | 1 |
AV | AU | <500m | A | 1 |
AV | AV | <500m | A | 1 |
AV | AW | <500m | A | 1 |
AW | AU | <500m | A | 1 |
AW | AV | <500m | A | 1 |
AW | AW | <500m | A | 1 |
AX | AX | <500m | A | 1 |
AX | AY | <500m | A | 1 |
AX | AZ | <500m | A | 1 |
AY | AX | <500m | A | 1 |
AY | AY | <500m | A | 1 |
AY | AZ | <500m | A | 1 |
AZ | AX | <500m | A | 1 |
AZ | AY | <500m | A | 1 |
AZ | AZ | <500m | A | 1 |
BA | BA | <500m | A | 1 |
BA | BB | <500m | A | 1 |
BA | BC | <500m | A | 1 |
BB | BA | <500m | A | 1 |
BB | BB | <500m | A | 1 |
BB | BC | <500m | A | 1 |
BC | BA | <500m | A | 1 |
BC | BB | <500m | A | 1 |
BC | BC | <500m | A | 1 |
BD | BD | <500m | A | 1 |
BD | BE | <500m | A | 1 |
BD | BF | <500m | A | 1 |
BE | BD | <500m | A | 1 |
BE | BE | <500m | A | 1 |
BE | BF | <500m | A | 1 |
BF | BD | <500m | A | 1 |
BF | BE | <500m | A | 1 |
BF | BF | <500m | A | 1 |
BG | BG | <500m | A | 1 |
BG | BH | <500m | A | 1 |
BG | BI | <500m | A | 1 |
BH | BG | <500m | A | 1 |
BH | BH | <500m | A | 1 |
BH | BI | <500m | A | 1 |
BI | BG | <500m | A | 1 |
BI | BH | <500m | A | 1 |
BI | BI | <500m | A | 1 |
BJ | BJ | <500m | A | 1 |
BJ | BK | <500m | A | 1 |
BK | BJ | <500m | A | 1 |
BK | BK | <500m | A | 1 |
BL | BL | <500m | A | 1 |
BL | BM | <500m | A | 1 |
BL | BN | <500m | A | 1 |
BM | BL | <500m | A | 1 |
BM | BM | <500m | A | 1 |
BM | BN | <500m | A | 1 |
BN | BL | <500m | A | 1 |
BN | BM | <500m | A | 1 |
BN | BN | <500m | A | 1 |
BO | BO | <500m | A | 1 |
BO | BP | <500m | A | 1 |
BO | BQ | <500m | A | 1 |
BP | BO | <500m | A | 1 |
BP | BP | <500m | A | 1 |
BP | BQ | <500m | A | 1 |
BQ | BO | <500m | A | 1 |
BQ | BP | <500m | A | 1 |
BQ | BQ | <500m | A | 1 |
BR | BR | <500m | A | 1 |
BR | BS | <500m | A | 1 |
BR | BT | <500m | A | 1 |
BS | BR | <500m | A | 1 |
BS | BS | <500m | A | 1 |
BS | BT | <500m | A | 1 |
BT | BR | <500m | A | 1 |
BT | BS | <500m | A | 1 |
BT | BT | <500m | A | 1 |
BU | BU | <500m | A | 1 |
BU | BV | <500m | A | 1 |
BU | BW | <500m | A | 1 |
BV | BU | <500m | A | 1 |
BV | BV | <500m | A | 1 |
BV | BW | <500m | A | 1 |
BW | BU | <500m | A | 1 |
BW | BV | <500m | A | 1 |
BW | BW | <500m | A | 1 |
BX | BX | <500m | A | 1 |
BX | BY | <500m | A | 1 |
BX | BZ | <500m | A | 1 |
BY | BX | <500m | A | 1 |
BY | BY | <500m | A | 1 |
BY | BZ | <500m | A | 1 |
BZ | BX | <500m | A | 1 |
BZ | BY | <500m | A | 1 |
BZ | BZ | <500m | A | 1 |
CA | CA | <500m | A | 1 |
CA | CB | <500m | A | 1 |
CA | CC | <500m | A | 1 |
CB | CA | <500m | A | 1 |
CB | CB | <500m | A | 1 |
CB | CC | <500m | A | 1 |
CC | CA | <500m | A | 1 |
CC | CB | <500m | A | 1 |
CC | CC | <500m | A | 1 |
CD | CD | <500m | A | 1 |
CD | CE | <500m | A | 1 |
CD | CF | <500m | A | 1 |
CE | CD | <500m | A | 1 |
CE | CE | <500m | A | 1 |
CE | CF | <500m | A | 1 |
CF | CD | <500m | A | 1 |
CF | CE | <500m | A | 1 |
CF | CF | <500m | A | 1 |
CG | CG | <500m | A | 1 |
CG | CH | <500m | A | 1 |
CG | CI | <500m | A | 1 |
CH | CG | <500m | A | 1 |
CH | CH | <500m | A | 1 |
CH | CI | <500m | A | 1 |
CI | CG | <500m | A | 1 |
CI | CH | <500m | A | 1 |
CI | CI | <500m | A | 1 |
CJ | CJ | <500m | A | 1 |
CJ | CK | <500m | A | 1 |
CJ | CL | <500m | A | 1 |
CK | CJ | <500m | A | 1 |
CK | CK | <500m | A | 1 |
CK | CL | <500m | A | 1 |
CL | CJ | <500m | A | 1 |
CL | CK | <500m | A | 1 |
CL | CL | <500m | A | 1 |
CM | CM | <500m | A | 1 |
CM | CN | <500m | A | 1 |
CM | CO | <500m | A | 1 |
CN | CM | <500m | A | 1 |
CN | CN | <500m | A | 1 |
CN | CO | <500m | A | 1 |
CO | CM | <500m | A | 1 |
CO | CN | <500m | A | 1 |
CO | CO | <500m | A | 1 |
CP | CP | <500m | A | 1 |
CP | CQ | <500m | A | 1 |
CP | CR | <500m | A | 1 |
CQ | CP | <500m | A | 1 |
CQ | CQ | <500m | A | 1 |
CQ | CR | <500m | A | 1 |
CR | CP | <500m | A | 1 |
CR | CQ | <500m | A | 1 |
CR | CR | <500m | A | 1 |
CS | CS | <500m | A | 1 |
CS | CT | <500m | A | 1 |
CS | CU | <500m | A | 1 |
CT | CS | <500m | A | 1 |
CT | CT | <500m | A | 1 |
CT | CU | <500m | A | 1 |
CU | CS | <500m | A | 1 |
CU | CT | <500m | A | 1 |
CU | CU | <500m | A | 1 |
CV | CV | <500m | A | 1 |
CV | CW | <500m | A | 1 |
CV | CX | <500m | A | 1 |
CW | CV | <500m | A | 1 |
CW | CW | <500m | A | 1 |
CW | CX | <500m | A | 1 |
CX | CV | <500m | A | 1 |
CX | CW | <500m | A | 1 |
CX | CX | <500m | A | 1 |
CY | CY | <500m | A | 1 |
CY | CZ | <500m | A | 1 |
CY | DA | <500m | A | 1 |
CZ | CY | <500m | A | 1 |
CZ | CZ | <500m | A | 1 |
CZ | DA | <500m | A | 1 |
DA | CY | <500m | A | 1 |
DA | CZ | <500m | A | 1 |
DA | DA | <500m | A | 1 |
DB | DB | <500m | A | 1 |
DB | DC | <500m | A | 1 |
DB | DD | <500m | A | 1 |
DC | DB | <500m | A | 1 |
DC | DC | <500m | A | 1 |
DC | DD | <500m | A | 1 |
DD | DB | <500m | A | 1 |
DD | DC | <500m | A | 1 |
DD | DD | <500m | A | 1 |
DE | DE | <500m | A | 1 |
DE | DF | <500m | A | 1 |
DE | DG | <500m | A | 1 |
DF | DE | <500m | A | 1 |
DF | DF | <500m | A | 1 |
DF | DG | <500m | A | 1 |
DG | DE | <500m | A | 1 |
DG | DF | <500m | A | 1 |
DG | DG | <500m | A | 1 |
DH | DH | <500m | A | 1 |
DH | DI | <500m | A | 1 |
DH | DJ | <500m | A | 1 |
DI | DH | <500m | A | 1 |
DI | DI | <500m | A | 1 |
DI | DJ | <500m | A | 1 |
DJ | DH | <500m | A | 1 |
DJ | DI | <500m | A | 1 |
DJ | DJ | <500m | A | 1 |
DK | DK | <500m | A | 1 |
DK | DL | <500m | A | 1 |
DK | DM | <500m | A | 1 |
DL | DK | <500m | A | 1 |
DL | DL | <500m | A | 1 |
DL | DM | <500m | A | 1 |
DM | DK | <500m | A | 1 |
DM | DL | <500m | A | 1 |
DM | DM | <500m | A | 1 |
DN | DN | <500m | A | 1 |
DN | DO | <500m | A | 1 |
DN | DP | <500m | A | 1 |
DO | DN | <500m | A | 1 |
DO | DO | <500m | A | 1 |
DO | DP | <500m | A | 1 |
DP | DN | <500m | A | 1 |
DP | DO | <500m | A | 1 |
DP | DP | <500m | A | 1 |
DQ | DQ | <500m | A | 1 |
DQ | DR | <500m | A | 1 |
DQ | DS | <500m | A | 1 |
DR | DQ | <500m | A | 1 |
DR | DR | <500m | A | 1 |
DR | DS | <500m | A | 1 |
DS | DQ | <500m | A | 1 |
DS | DR | <500m | A | 1 |
DS | DS | <500m | A | 1 |
DT | DT | <500m | A | 1 |
DT | DU | <500m | A | 1 |
DT | DV | <500m | A | 1 |
DU | DT | <500m | A | 1 |
DU | DU | <500m | A | 1 |
DU | DV | <500m | A | 1 |
DV | DT | <500m | A | 1 |
DV | DU | <500m | A | 1 |
DV | DV | <500m | A | 1 |
DW | DW | <500m | A | 1 |
DW | DX | <500m | A | 1 |
DW | DY | <500m | A | 1 |
DX | DW | <500m | A | 1 |
DX | DX | <500m | A | 1 |
DX | DY | <500m | A | 1 |
DY | DW | <500m | A | 1 |
DY | DX | <500m | A | 1 |
DY | DY | <500m | A | 1 |
DZ | DZ | <500m | A | 1 |
DZ | EA | <500m | A | 1 |
DZ | EB | <500m | A | 1 |
EA | DZ | <500m | A | 1 |
EA | EA | <500m | A | 1 |
EA | EB | <500m | A | 1 |
EB | DZ | <500m | A | 1 |
EB | EA | <500m | A | 1 |
EB | EB | <500m | A | 1 |
EC | EC | <500m | A | 1 |
EC | ED | <500m | A | 1 |
ED | EC | <500m | A | 1 |
ED | ED | <500m | A | 1 |
EE | EE | <500m | A | 1 |
EE | EF | <500m | A | 1 |
EE | EG | <500m | A | 1 |
EF | EE | <500m | A | 1 |
EF | EF | <500m | A | 1 |
EF | EG | <500m | A | 1 |
EG | EE | <500m | A | 1 |
EG | EF | <500m | A | 1 |
EG | EG | <500m | A | 1 |
EH | EH | <500m | A | 1 |
EH | EI | <500m | A | 1 |
EH | EJ | <500m | A | 1 |
EI | EH | <500m | A | 1 |
EI | EI | <500m | A | 1 |
EI | EJ | <500m | A | 1 |
EJ | EH | <500m | A | 1 |
EJ | EI | <500m | A | 1 |
EJ | EJ | <500m | A | 1 |
EK | EK | <500m | A | 1 |
EK | EL | <500m | A | 1 |
EK | EM | <500m | A | 1 |
EL | EK | <500m | A | 1 |
EL | EL | <500m | A | 1 |
EL | EM | <500m | A | 1 |
EM | EK | <500m | A | 1 |
EM | EL | <500m | A | 1 |
EM | EM | <500m | A | 1 |
library(ggraph)
library(igraph)
We use the ggraph
and the igraph
packages
to further visualize interdistance
data.
%>%
interdistance graph_from_data_frame() %>%
ggraph() +
geom_edge_link(alpha = 1/100) +
geom_node_point(size = 2) +
geom_node_text(aes(label = name), vjust = 1.25, hjust = 1.25, size = 2.5) +
theme_void()
Relationship between all locations considering all levels of
Interdistance class
.
Nice viz but difficult to make any interpretation. We can get a more
insightful plot by considering just interdistance of categories
<500m
and 500m - 1500m
.
%>%
interdistance filter(`Interdistance cat` %in% c("A", "B")) %>%
graph_from_data_frame() %>%
ggraph() +
geom_edge_link(aes(alpha = `Interdistance num`)) +
geom_node_point(size = 2) +
geom_node_text(aes(label = name), vjust = 1.25, hjust = 1.25, size = 2.5) +
theme_void() +
theme(legend.position = "none")
Relationship between all locations considering
Interdistance class
of <500m
and
500m - 1500m
only.
From the above graph, we notice the creation of some “clusters”, each
containing 3 piles, representing the piles used for each jacket. Within
each of these clusters, the Interdistance class
is equal to
<500m
. In other words, when the
Interdistance class
between piles is <500m
,
they are basically the same location, as they belong to the same jacket.
Let’s see how the CPT and installation data differ for piles within the
same jacket. Consider locations DB
, DC
, and
DD
.
<- training %>%
training_DBDCDD filter(`Location ID` %in% c("DB", "DC", "DD"))
<- training %>%
plot7 ggplot(aes(`z [m]`, `qc [MPa]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_DBDCDD, aes(`z [m]`, `qc [MPa]`, group = `Location ID`, colour = `Location ID`),
size = 1,
alpha = 1) +
scale_colour_manual(values = c("tomato", "steelblue", "grey20")) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 100)) +
theme(legend.position = "none",
panel.grid.minor = element_blank())
<- training %>%
plot8 ggplot(aes(`z [m]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_DBDCDD, aes(`z [m]`, `Blowcount [Blows/m]`, group = `Location ID`, colour = `Location ID`),
size = 1,
alpha = 1) +
scale_colour_manual(values = c("tomato", "steelblue", "grey20")) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 150)) +
theme(legend.position = "none",
panel.grid.minor = element_blank()) +
labs(x = "")
<- training %>%
plot9 ggplot(aes(`z [m]`, `Number of blows`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_step(data = training_DBDCDD, aes(`z [m]`, `Number of blows`, group = `Location ID`, colour = `Location ID`),
size = 1,
alpha = 1) +
scale_colour_manual(values = c("tomato", "steelblue", "grey20")) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 2500)) +
theme(legend.position = c(0.75, 0.8),
panel.grid.minor = element_blank()) +
labs(x = "")
+ plot8 + plot9 plot7
Plot of data for locations DB
, DC
, and
DD
.
From the above graphs we can infer that the same CPT test is used for
the three piles of the jacket, since the CPT profiles of all three
locations completely overlap. Nonetheless, noticeable differences are
observed in the Blowcount [Blows/m]
values. These
differences represent mostly the spatial variations of the soil
conditions between piles of the same jacket.
Another way of looking at this is to emphasize that, although we have
data about the installation of 114 piles, the CPT data are relatively
scarce. Take the validation
dataset, for example. Although
it contains data about 20 pile locations, only seven CPT registrations
are included. It is very likely that this limits the accuracy of our
hypothetical predictive models.
We build the same plot as above but with separated locations for
training
and validation
.
<- interdistance %>%
interdistance_tr filter(`ID location 1` %in% training$`Location ID`) %>%
mutate(Category = "training")
<- interdistance %>%
interdistance_va filter(`ID location 1` %in% validation$`Location ID`) %>%
mutate(Category = "validation")
<- full_join(interdistance_tr, interdistance_va)
interdistance_all
%>%
interdistance_all filter(`Interdistance cat` %in% c("A", "B")) %>%
graph_from_data_frame() %>%
ggraph() +
geom_edge_link(aes(alpha = `Interdistance num`)) +
geom_node_point(size = 2) +
geom_node_text(aes(label = name), vjust = 1.25, hjust = 1.25, size = 2.5) +
theme_void() +
facet_wrap(~ Category, nrow = 2) +
theme(legend.position = "none")
Relationship between all locations considering
Interdistance class
of <500m
and
500m - 1500m
only (keeping training
and
validation
separated).
The above graph gives an idea on how the locations from
training
and validation
are related to each
other, in terms of interdistance. Consider the jacket that contains
locations CG
, CH
and CI
. This
jacket is part of the validation
dataset (we know that from
the data but we can infer it from the bottom part of the graph, since
these 3 locations are connected by a dark line). We see that the only
other jacket from validation
, that is closer than 1500m
with this jacket, is the one that contains locations BJ
and
BK
. All the other jackets from validation
,
like the one with locations DT
, DU
and
DV
, is further than 1500m.
Further analyses and considerations on the interdistance
data can be made and can potentially be incorporated in the
model-building process.
training
vs validation
dataWe make a simple plot of qc [MPA]
vs z [m]
for training
and validation
datasets, just to
see if there are any significant differences.
<- training %>%
plot13 ggplot(aes(`z [m]`, `qc [MPa]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_point(data = validation, aes(`z [m]`, `qc [MPa]`),
alpha = 1/2, colour = "grey") +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 100)) +
theme(panel.grid.minor = element_blank(),
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "training + validation")
<- training %>%
plot14 ggplot(aes(`z [m]`, `qc [MPa]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_point(data = validation, aes(`z [m]`, `qc [MPa]`),
alpha = 1/2, colour = "grey") +
geom_point(data = training, aes(`z [m]`, `qc [MPa]`),
alpha = 1,
colour = "grey20") +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 100)) +
labs(x = "") +
theme(panel.grid.minor = element_blank(),
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "training")
<- training %>%
plot15 ggplot(aes(`z [m]`, `qc [MPa]`)) +
geom_point(alpha = 1/2, colour = "grey") +
geom_point(data = validation, aes(`z [m]`, `qc [MPa]`),
alpha = 1/2, colour = "grey") +
geom_point(data = validation, aes(`z [m]`, `qc [MPa]`),
alpha = 1,
colour = "grey20") +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 35), ylim = c(0, 100)) +
labs(x = "") +
theme(panel.grid.minor = element_blank(),
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "validation")
+ plot14 + plot15 plot13
qc [MPA]
vs z [m]
for
training
and validation
.
For the purpose of our work, it is particularly important to
understand the relationship between Blowcount [Blows/m]
and
all the features (i.e. predictors), so we get a better idea which
features we will actually include in the model. A good starting point is
to build a scatterplot matrix of the training
dataset.
library(ggforce)
ggplot(training, aes(.panel_x, .panel_y)) +
geom_point(alpha = 1/20, size = 0.5) +
facet_matrix(vars(`Blowcount [Blows/m]`, `z [m]`, `qc [MPa]`, `fs [MPa]`, `u2 [MPa]`, `Normalised ENTRHU [-]`, `Bottom wall thickness [mm]`, `Pile penetration [m]`)) +
theme(panel.grid.minor = element_blank(),
strip.background = element_blank(),
strip.text = element_text(colour = "grey20"))
Scatterplot matrix for training
.
Notice that we have not included those parameters we know to not have
any meaningful influence or that are duplicates. From the previous
graph, we can grasp the relationship between
Blowcount [Blows/m]
and other parameters. For some
parameters (z [m]
, Normalised ENTRHU [-]
),
some pattern is visually recognizable, while for other parameters, it is
not that obvious. All this can be numerically expressed through a
correlation plot.
library(corrplot)
library(RColorBrewer)
<- training %>%
training_corr ::select(`Blowcount [Blows/m]`, `z [m]`, `qc [MPa]`, `fs [MPa]`, `u2 [MPa]`, `Normalised ENTRHU [-]`, `Bottom wall thickness [mm]`, `Pile penetration [m]`)
dplyr
<- cor(training_corr)
corr_matrix
corrplot(corr_matrix,
method = "color",
type = "lower",
tl.col = "black",
col = brewer.pal(n = 10, name = "RdYlBu"),
bg = "red",
addCoef.col = "grey20",
addgrid.col = "grey20",
cl.cex = .75,
tl.cex = .75,
number.cex = 0.65,
number.digits = 3,
diag = FALSE)
Correlations between parameters for training
.
By looking at the first column of the correlation plot,
Blowcount [Blows/m]
looks particularly well-correlated to
both z [m]
and Normalised ENTRHU [-]
. Maybe
surprisingly, the correlation with the CPT test parameters isn’t so
strong (the coefficient of correlation barely passes the 0.5 mark, for
qc [MPa]
).
Now we try an approach to introduce engineering/geotechnical knowledge by means of creating some additional parameter (i.e. feature) which hopefully provides engineering insights and potentially has better predictive performance. We use the available data to estimate two parameters:
friction angle [°]
- using the Kulhawy and Mayne 1990
relationship and,skin friction API [kPa]
- which is the value of the
unit skin friction according to the relationship proposed by API.We do this for both, training
and
validation
. The
Vertical effective stress [kPa]
is necessary asan input in
assessments and it is provided within the normalised datasets. Some
preparatory and data manipulation is needed at this point, especially
considering that the normalised data contain few missing values
(NA
). Various approaches can be used to deal with the
NA
values (removing, replacing with the average value, etc)
and here we choose to replace them with the next row value. Notice that
the friction angle [°]
is used here as an input in the
estimation of skin friction API [kPa]
, not as a predictive
feature per se.
<- training_no %>%
vert_estress_tr mutate(`Ic [-]` = replace(`Ic [-]`, which(is.na(`Qt [-]`)), NA)) %>%
fill(`area ratio [-]`, `qt [MPa]`, `Delta u2 [MPa]`, `Rf [%]`, `Bq [-]`, `Qt [-]`, `Fr [%]`, `qnet [MPa]`, `Ic [-]`, .direction = "up") %>%
::select(`ID`, `Vertical effective stress [kPa]`)
dplyr
<- training %>%
training inner_join(vert_estress_tr, by = "ID") %>%
mutate(`friction angle [°]` = 17.6 + 11 * log((`qc [MPa]`/0.1)/(sqrt(`Vertical effective stress [kPa]`/0.1))),
`skin friction API [kPa]` = 0.8 * `Vertical effective stress [kPa]` * tan((`friction angle [°]` - 5)*3.14/180))
<- validation_no %>%
vert_estress_va mutate(`Ic [-]` = replace(`Ic [-]`, which(is.na(`Qt [-]`)), NA)) %>%
fill(`area ratio [-]`, `qt [MPa]`, `Delta u2 [MPa]`, `Rf [%]`, `Bq [-]`, `Qt [-]`, `Fr [%]`, `qnet [MPa]`, `Ic [-]`, .direction = "up") %>%
::select(`ID`, `Vertical effective stress [kPa]`)
dplyr
<- validation %>%
validation inner_join(vert_estress_va, by = "ID") %>%
mutate(`friction angle [°]` = 17.6 + 11 * log((`qc [MPa]`/0.1)/(sqrt(`Vertical effective stress [kPa]`/0.1))),
`skin friction API [kPa]` = 0.8 * `Vertical effective stress [kPa]` * tan((`friction angle [°]` - 5)*3.14/180))
We can visualize the difference between
skin friction API [kPa]
and qc [MPa]
in terms
of their relationship with Blowcount [Blows/m]
. The next
graphs suggest that skin friction API [kPa]
is a better
predictor for `Blowcount [Blows/m], having a value of the coefficient of
correlation around 0.72.
<- training %>%
plot16 ggplot(aes(`qc [MPa]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 100), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank())
<- training %>%
plot17 ggplot(aes(`fs [MPa]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 2), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank())
<- training %>%
plot18 ggplot(aes(`skin friction API [kPa]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 250), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank())
+ plot17 + plot18 plot16
Comparison of Blowcount [Blows/m]
’s relationship with
qc [MPa]
, fs [MPa]
and
skin friction API [kPa]
.
%>%
training ::select(`Blowcount [Blows/m]`, `skin friction API [kPa]`) %>%
dplyrcor() %>%
kable(digits = 3,
align = "r") %>%
kable_styling(full_width = F, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
Blowcount [Blows/m] | skin friction API [kPa] | |
---|---|---|
Blowcount [Blows/m] | 1.000 | 0.717 |
skin friction API [kPa] | 0.717 | 1.000 |
We now proceed with the model-building process, starting from some simple linear models and then progressing to more advanced ones. Before that, we need to split the data.
training
dataThe first thing we do is to randomly split the training
data into:
train
- used to train the model/machine;test
- used to evaluate how the model performs on new
data.Notice that we have also another set of data,
validation
, which is used to evaluate the model performance
in the context of the competition we introduced at the top of this
post.
<- training %>%
training mutate(`Location ID` = as_factor(`Location ID`))
<- levels(training$`Location ID`)
training_locations
set.seed(111)
<- sample(training_locations, 18)
test_locations
<- training %>% filter(`Location ID` %in% test_locations)
test <- training %>% filter (!(`Location ID` %in% test_locations)) train
Our first attempt involves considering Linear Regression models.
The idea of a Simple Linear Regression is to predict
Blowcount [Blows/m]
considering only one feature. We use
Normalised ENTRHU [-]
.
library(broom)
<- lm(`Blowcount [Blows/m]` ~ `Normalised ENTRHU [-]`, data = train)
model_slr
%>%
model_slr glance() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
r.squared | adj.r.squared | sigma | statistic | p.value | df | logLik | AIC | BIC | deviance | df.residual | nobs |
---|---|---|---|---|---|---|---|---|---|---|---|
0.4475658 | 0.4474183 | 22.19974 | 3034.898 | 0 | 1 | -16936.28 | 33878.57 | 33897.25 | 1846136 | 3746 | 3748 |
%>%
model_slr tidy() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 20.9068 | 0.8842616 | 23.64323 | 0 |
Normalised ENTRHU [-]
|
119.2639 | 2.1648957 | 55.08991 | 0 |
The above tables present some of the key features of the model, like
adj.r.squared
, p.value
, Intercept’s
estimate
, Intercept’s std.error
, etc. These
values are useful to evaluate how the model performs. The reference
metric, as described in the competition evaluation section, is the
RMSE
(Root Mean Square Error). Lower the RMSE
value, the better. We can estimate RMSE
as follows.
<- model_slr %>%
train_aug_slr augment(data = train)
sqrt(sum((train_aug_slr$`Blowcount [Blows/m]` - train_aug_slr$.fitted)^2)/nrow(train_aug_slr))
## [1] 22.19382
We can also plot the model predictions and compare it to the actual data.
<- train_aug_slr %>%
plot_slr1 ggplot(aes(`Normalised ENTRHU [-]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_point(aes(y = .fitted), color = "tomato", alpha = 1) +
expand_limits(x = 0, y = 0) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Model fit (red) vs actual data.",
x = "Normalised ENTRHU [-]",
y = "Blowcount [Blows/m]")
<- train_aug_slr %>%
plot_slr2 ggplot(aes(.fitted, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
expand_limits(x = 0, y = 0) +
geom_abline(color = "grey20", size = 1) +
coord_fixed(xlim = c(0, 150), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Predicted vs actual Blowcount [Blows/m].",
x = "Predicted Blowcount [Blows/m]",
y = "Actual Blowcount [Blows/m]")
<- train_aug_slr %>%
plot_slr3 ggplot(aes(`Normalised ENTRHU [-]`, .resid)) +
geom_point(alpha = 1/20) +
geom_hline(aes(yintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Scatter plot of residuals.",
x = "Normalised ENTRHU [-]",
y = "Residuals")
<- train_aug_slr %>%
plot_slr4 ggplot(aes(.resid)) +
geom_histogram(binwidth = 2, alpha = 1/4) +
geom_vline(aes(xintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Histogram of residuals.",
x = "Residuals",
y = "Count") +
coord_cartesian(xlim = c(-100, 100))
<- plot_slr1 + plot_slr2
patch_slr1 <- plot_slr3 + plot_slr4
patch_slr2
/ patch_slr2 patch_slr1
Results for Simple Linear Regression.
The above plots give another overview of our model’s results and
performance, in visual terms. As it was obvious, and as it is suggested
by the adj.r.squared
value as well, a Simple Linear
Regression model is not likely to be a good fit for our data. In
particular, the residuals scatter plot and histogram suggest that the
residuals show some pattern (i.e. they are not random). In this context,
we would like the residuals histogram to resemble a normal
distribution.
A Multiple Linear Regression is similar to the Simple Linear
Regression, with the difference that, to predict
Blowcount [Blows/m]
, we now consider more than one feature.
We use:
Normalised ENTRHU [-]
;z [m]
;skin friction API [kPa]
.We choose to use these features based on their relatively good
correlation with Blowcount [Blows/m]
. Note that more
rigorous and robust procedures for feature selection (i.e. deciding
which features to include in the model) exist. One option could be to
introduce a regularization technique by means of lasso
regression.
The application steps of Multiple Linear Regression are in analogy of those used for Simple Linear Regression.
<- lm(`Blowcount [Blows/m]` ~ `Normalised ENTRHU [-]` + `z [m]` + `skin friction API [kPa]`, data = train)
model_mlr
%>%
model_mlr glance() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
r.squared | adj.r.squared | sigma | statistic | p.value | df | logLik | AIC | BIC | deviance | df.residual | nobs |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5365526 | 0.5361812 | 20.33873 | 1444.862 | 0 | 3 | -16607.13 | 33224.26 | 33255.41 | 1548758 | 3744 | 3748 |
%>%
model_mlr tidy() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 17.8893563 | 0.82998925 | 21.553720 | 0.000e+00 |
Normalised ENTRHU [-]
|
18.7555493 | 4.29131009 | 4.370588 | 1.273e-05 |
z [m]
|
1.2175538 | 0.11676109 | 10.427736 | 0.000e+00 |
skin friction API [kPa]
|
0.2475385 | 0.01849432 | 13.384571 | 0.000e+00 |
<- model_mlr %>%
train_aug_mlr augment(data = train)
sqrt(sum((train_aug_mlr$`Blowcount [Blows/m]` - train_aug_mlr$.fitted)^2)/nrow(train_aug_mlr))
## [1] 20.32788
<- train_aug_mlr %>%
plot_mlr1 ggplot(aes(`Normalised ENTRHU [-]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_point(aes(y = .fitted), color = "tomato", alpha = 1) +
expand_limits(x = 0, y = 0) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Model fit (red) vs actual data.",
x = "Normalised ENTRHU [-]",
y = "Blowcount [Blows/m]")
<- train_aug_mlr %>%
plot_mlr2 ggplot(aes(.fitted, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
expand_limits(x = 0, y = 0) +
geom_abline(color = "grey20", size = 1) +
coord_fixed(xlim = c(0, 150), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Predicted vs actual Blowcount [Blows/m].",
x = "Predicted Blowcount [Blows/m]",
y = "Actual Blowcount [Blows/m]")
<- train_aug_mlr %>%
plot_mlr3 ggplot(aes(`Normalised ENTRHU [-]`, .resid)) +
geom_point(alpha = 1/20) +
geom_hline(aes(yintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Scatter plot of residuals.",
x = "Normalised ENTRHU [-]",
y = "Residuals")
<- train_aug_mlr %>%
plot_mlr4 ggplot(aes(.resid)) +
geom_histogram(binwidth = 2, alpha = 1/4) +
geom_vline(aes(xintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Histogram of residuals.",
x = "Residuals",
y = "Count") +
coord_cartesian(xlim = c(-100, 100))
<- plot_mlr1 + plot_mlr2
patch_mlr1 <- plot_mlr3 + plot_mlr4
patch_mlr2
/ patch_mlr2 patch_mlr1
Results for Multiple Linear Regression.
We see that, the Multiple Linear Regression model performs a bit better than the Simple Linear Regression model. Yet, we are far from capturing the trend of the data.
Since the relationship between blowcount and other parameters is obviously not perfectly linear, it’s in our interest to explore other models which account for nonlinearity. We explore Natural Splines, which model relationship of various degrees of freedom. These models are similar to Polynomial Regression models.
We start with a Natural Spline with 2 degrees of freedom and one feature.
library(splines)
<- lm(`Blowcount [Blows/m]` ~ ns(`Normalised ENTRHU [-]`, 2), data = train)
model_ns2
%>%
model_ns2 glance() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
r.squared | adj.r.squared | sigma | statistic | p.value | df | logLik | AIC | BIC | deviance | df.residual | nobs |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5254787 | 0.5252252 | 20.57754 | 2073.582 | 0 | 2 | -16651.38 | 33310.77 | 33335.68 | 1585765 | 3745 | 3748 |
%>%
model_ns2 tidy() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | 17.73742 | 0.8664459 | 20.471466 | 0 |
ns(Normalised ENTRHU [-] , 2)1
|
116.28418 | 1.8555944 | 62.666809 | 0 |
ns(Normalised ENTRHU [-] , 2)2
|
15.67978 | 2.0841856 | 7.523216 | 0 |
<- model_ns2 %>%
train_aug_ns2 augment(data = train)
sqrt(sum((train_aug_ns2$`Blowcount [Blows/m]` - train_aug_ns2$.fitted)^2)/nrow(train_aug_ns2))
## [1] 20.56931
<- train_aug_ns2 %>%
plot_ns21 ggplot(aes(`Normalised ENTRHU [-]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_point(aes(y = .fitted), color = "tomato", alpha = 1) +
expand_limits(x = 0, y = 0) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Model fit (red) vs actual data.",
x = "Normalised ENTRHU [-]",
y = "Blowcount [Blows/m]")
<- train_aug_ns2 %>%
plot_ns22 ggplot(aes(.fitted, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
expand_limits(x = 0, y = 0) +
geom_abline(color = "grey20", size = 1) +
coord_fixed(xlim = c(0, 150), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Predicted vs actual Blowcount [Blows/m].",
x = "Predicted Blowcount [Blows/m]",
y = "Actual Blowcount [Blows/m]")
<- train_aug_ns2 %>%
plot_ns23 ggplot(aes(`Normalised ENTRHU [-]`, .resid)) +
geom_point(alpha = 1/20) +
geom_hline(aes(yintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Scatter plot of residuals.",
x = "Normalised ENTRHU [-]",
y = "Residuals")
<- train_aug_ns2 %>%
plot_ns24 ggplot(aes(.resid)) +
geom_histogram(binwidth = 2, alpha = 1/4) +
geom_vline(aes(xintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Histogram of residuals.",
x = "Residuals",
y = "Count") +
coord_cartesian(xlim = c(-100, 100))
<- plot_ns21 + plot_ns22
patch_ns21 <- plot_ns23 + plot_ns24
patch_ns22
/ patch_ns22 patch_ns21
Results for Natural Spline with 2 degrees of freedom - one feature.
We explore the same model using three features.
<- lm(`Blowcount [Blows/m]` ~ ns(`Normalised ENTRHU [-]`, 2) + ns(`z [m]`, 2) + ns(`skin friction API [kPa]`, 2), data = train)
model_mns2
%>%
model_mns2 glance() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
r.squared | adj.r.squared | sigma | statistic | p.value | df | logLik | AIC | BIC | deviance | df.residual | nobs |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6538748 | 0.6533197 | 17.58386 | 1177.871 | 0 | 6 | -16060.13 | 32136.25 | 32186.08 | 1156688 | 3741 | 3748 |
%>%
model_mns2 tidy() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -3.479181 | 1.062089 | -3.275789 | 0.00106328 |
ns(Normalised ENTRHU [-] , 2)1
|
-4.445504 | 3.972912 | -1.118954 | 0.26323175 |
ns(Normalised ENTRHU [-] , 2)2
|
-35.723600 | 2.443284 | -14.621142 | 0.00000000 |
ns(z [m] , 2)1
|
60.878212 | 5.404193 | 11.264996 | 0.00000000 |
ns(z [m] , 2)2
|
16.451251 | 2.789028 | 5.898560 | 0.00000000 |
ns(skin friction API [kPa] , 2)1
|
110.762209 | 4.570665 | 24.233283 | 0.00000000 |
ns(skin friction API [kPa] , 2)2
|
41.499418 | 3.439455 | 12.065695 | 0.00000000 |
<- model_mns2 %>%
train_aug_mns2 augment(data = train)
sqrt(sum((train_aug_mns2$`Blowcount [Blows/m]` - train_aug_mns2$.fitted)^2)/nrow(train_aug_mns2))
## [1] 17.56743
<- train_aug_mns2 %>%
plot_mns21 ggplot(aes(`Normalised ENTRHU [-]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_point(aes(y = .fitted), color = "tomato", alpha = 1) +
expand_limits(x = 0, y = 0) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Model fit (red) vs actual data.",
x = "Normalised ENTRHU [-]",
y = "Blowcount [Blows/m]")
<- train_aug_mns2 %>%
plot_mns22 ggplot(aes(.fitted, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
expand_limits(x = 0, y = 0) +
geom_abline(color = "grey20", size = 1) +
coord_fixed(xlim = c(0, 150), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Predicted vs actual Blowcount [Blows/m].",
x = "Predicted Blowcount [Blows/m]",
y = "Actual Blowcount [Blows/m]")
<- train_aug_mns2 %>%
plot_mns23 ggplot(aes(`Normalised ENTRHU [-]`, .resid)) +
geom_point(alpha = 1/20) +
geom_hline(aes(yintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Scatter plot of residuals.",
x = "Normalised ENTRHU [-]",
y = "Residuals")
<- train_aug_mns2 %>%
plot_mns24 ggplot(aes(.resid)) +
geom_histogram(binwidth = 2, alpha = 1/4) +
geom_vline(aes(xintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Histogram of residuals.",
x = "Residuals",
y = "Count") +
coord_cartesian(xlim = c(-100, 100))
<- plot_mns21 + plot_mns22
patch_mns21 <- plot_mns23 + plot_mns24
patch_mns22
/ patch_mns22 patch_mns21
Results for Natural Spline with 2 degrees of freedom - multiple features.
This model is already an improvement from the previous ones,
achieving an adj.r.squared
of 0.67 and a RMSE
around 17.1. The residuals histogram seems too look more like following
a normal distribution and it’s also narrower, indicating smaller
residual values.
We expect Natural Spline models with higher degrees of freedom to perform better, considering their higher flexibility. To see how increasing the degrees of freedom impacts the model performance, we explore models with degrees of freedom ranging between 2 and 8, and compare them.
<- tibble(spline_df = 2:8) %>%
models_ns mutate(lm_model = map(spline_df, ~ lm(`Blowcount [Blows/m]` ~ ns(`Normalised ENTRHU [-]`, df = .), data = train)))
<- models_ns %>%
augmented_unnested mutate(augmented = map(lm_model, augment, data = train)) %>%
unnest(augmented)
<- augmented_unnested %>%
p1 ggplot(aes(`Normalised ENTRHU [-]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/100) +
geom_line(aes(y = .fitted, colour = factor(spline_df)), alpha = 1, size = 1.5) +
expand_limits(x = 0, y = 0) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Model fit vs actual data.",
x = "Normalised ENTRHU [-]",
y = "Blowcount [Blows/m]",
colour = "Degrees of freedom") +
theme(legend.position = "bottom") +
guides(color = guide_legend(title.position = "top"))
<- models_ns %>%
glanced_models mutate(glanced = map(lm_model, glance, data = train)) %>%
unnest(glanced)
<- glanced_models %>%
p2 ggplot() +
geom_segment(aes(x = spline_df, xend = spline_df, y = 0.5, yend = adj.r.squared), size = 2, alpha = 1/2) +
geom_point(data = glanced_models, aes(spline_df, adj.r.squared, colour = adj.r.squared), size = 5) +
scale_color_distiller(palette = "Spectral", limits = c(0.52, 0.54)) +
expand_limits(x = 2, y = .5) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
scale_x_continuous(breaks = c(2:10)) +
labs(title = "Models comparison by adjusted R-squared value.",
x = "Number of degrees of freedom",
y = "Adjusted R-squared",
colour = "Adjusted R-squared") +
theme(legend.position = "bottom",
legend.key.width = unit(0.7, "cm")) +
guides(color = guide_legend(title.position = "top"))
+ p2 p1
Performance comparison for Natural Splines with degrees of freedom between 2 and 8.
It looks like there is no significant improvement in model’s performance after we apply 4 degrees of freedom. Thus, we continue with a Natural Spline model with 4 degrees of freedom and by using multiple features.
<- lm(`Blowcount [Blows/m]` ~ ns(`Normalised ENTRHU [-]`, 4) + ns(`z [m]`, 4) + ns(`skin friction API [kPa]`, 4), data = train)
model_mns4
%>%
model_mns4 glance() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
r.squared | adj.r.squared | sigma | statistic | p.value | df | logLik | AIC | BIC | deviance | df.residual | nobs |
---|---|---|---|---|---|---|---|---|---|---|---|
0.6772196 | 0.6761826 | 16.99416 | 653.0279 | 0 | 12 | -15929.27 | 31886.53 | 31973.74 | 1078674 | 3735 | 3748 |
%>%
model_mns4 tidy() %>%
kable(digits = 8,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
term | estimate | std.error | statistic | p.value |
---|---|---|---|---|
(Intercept) | -8.548995 | 1.833634 | -4.662323 | 0.00000324 |
ns(Normalised ENTRHU [-] , 4)1
|
11.885604 | 2.500446 | 4.753394 | 0.00000208 |
ns(Normalised ENTRHU [-] , 4)2
|
-21.529732 | 2.412246 | -8.925182 | 0.00000000 |
ns(Normalised ENTRHU [-] , 4)3
|
-10.065279 | 4.795385 | -2.098951 | 0.03588818 |
ns(Normalised ENTRHU [-] , 4)4
|
8.817843 | 4.138711 | 2.130577 | 0.03318915 |
ns(z [m] , 4)1
|
37.744106 | 3.378004 | 11.173493 | 0.00000000 |
ns(z [m] , 4)2
|
34.078242 | 3.019748 | 11.285128 | 0.00000000 |
ns(z [m] , 4)3
|
83.329878 | 7.092886 | 11.748374 | 0.00000000 |
ns(z [m] , 4)4
|
30.869633 | 3.730955 | 8.273922 | 0.00000000 |
ns(skin friction API [kPa] , 4)1
|
55.549457 | 2.725780 | 20.379291 | 0.00000000 |
ns(skin friction API [kPa] , 4)2
|
45.586043 | 2.814827 | 16.194971 | 0.00000000 |
ns(skin friction API [kPa] , 4)3
|
84.954922 | 6.100541 | 13.925801 | 0.00000000 |
ns(skin friction API [kPa] , 4)4
|
68.072852 | 4.307986 | 15.801548 | 0.00000000 |
<- model_mns4 %>%
train_aug_mns4 augment(data = train)
sqrt(sum((train_aug_mns4$`Blowcount [Blows/m]` - train_aug_mns4$.fitted)^2)/nrow(train_aug_mns4))
## [1] 16.96467
<- train_aug_mns4 %>%
plot_mns41 ggplot(aes(`Normalised ENTRHU [-]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_point(aes(y = .fitted), color = "tomato", alpha = 1) +
expand_limits(x = 0, y = 0) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Model fit (red) vs actual data.",
x = "Normalised ENTRHU [-]",
y = "Blowcount [Blows/m]")
<- train_aug_mns4 %>%
plot_mns42 ggplot(aes(.fitted, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
expand_limits(x = 0, y = 0) +
geom_abline(color = "grey20", size = 1) +
coord_fixed(xlim = c(0, 150), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Predicted vs actual Blowcount [Blows/m].",
x = "Predicted Blowcount [Blows/m]",
y = "Actual Blowcount [Blows/m]")
<- train_aug_mns4 %>%
plot_mns43 ggplot(aes(`Normalised ENTRHU [-]`, .resid)) +
geom_point(alpha = 1/20) +
geom_hline(aes(yintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Scatter plot of residuals.",
x = "Normalised ENTRHU [-]",
y = "Residuals")
<- train_aug_mns4 %>%
plot_mns44 ggplot(aes(.resid)) +
geom_histogram(binwidth = 2, alpha = 1/4) +
geom_vline(aes(xintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Histogram of residuals.",
x = "Residuals",
y = "Count") +
coord_cartesian(xlim = c(-100, 100))
<- plot_mns41 + plot_mns42
patch_mns41 <- plot_mns43 + plot_mns44
patch_mns42
/ patch_mns42 patch_mns41
Results for Natural Spline with 4 degrees of freedom - multiple features.
test
dataThe last model we proposed, having an adj.r.squared
of
0.67 and a RMSE
around 16.9, seems to be the
best-performing model so far. We validate it against the
test
data. Note that this is indeed the reason we created
this dataset, separating it from the initial training
data.
$predictions <- predict(model_mns4, newdata = test)
testsqrt(sum((test$'Blowcount [Blows/m]' - test$predictions)^2)/nrow(test))
## [1] 15.26106
<- test %>%
plot_t1 ggplot(aes(`Normalised ENTRHU [-]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_point(data = test, aes(`Normalised ENTRHU [-]`, predictions), color = "tomato", alpha = 1) +
expand_limits(x = 0, y = 0) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Model fit (red) vs actual data.",
x = "Normalised ENTRHU [-]",
y = "Blowcount [Blows/m]")
<- test %>%
plot_t2 ggplot(aes(predictions, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
expand_limits(x = 0, y = 0) +
geom_abline(color = "grey20", size = 1) +
coord_fixed(xlim = c(0, 150), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Predicted vs actual Blowcount [Blows/m].",
x = "Predicted Blowcount [Blows/m]",
y = "Actual Blowcount [Blows/m]")
<- test %>%
plot_t3 ggplot(aes(`Normalised ENTRHU [-]`, predictions - `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_hline(aes(yintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Scatter plot of residuals.",
x = "Normalised ENTRHU [-]",
y = "Residuals")
<- test %>%
plot_t4 ggplot(aes(predictions - `Blowcount [Blows/m]`)) +
geom_histogram(binwidth = 2, alpha = 1/4) +
geom_vline(aes(xintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Histogram of residuals.",
x = "Residuals",
y = "Count") +
coord_cartesian(xlim = c(-100, 100))
<- plot_t1 + plot_t2
patch_t1 <- plot_t3 + plot_t4
patch_t2
/ patch_t2 patch_t1
Results for Natural Spline with 4 degrees of freedom - multiple
features - applied to the test
data.
The RMSE
value of 15.2 and the above plots suggest that
the model performs well and consistently against the test
dataset. Let’s plot predicted vs actual Blowcount [Blows/m]
for the 18 piles from test
.
%>%
test ggplot(aes(`z [m]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/5) +
geom_step(data = test, aes(`z [m]`, predictions, group = `Location ID`),
size = 1,
alpha = 1,
colour = "tomato") +
scale_x_reverse() +
scale_y_continuous(position = "right") +
coord_flip(xlim = c(0, 30), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank(),
strip.background = element_blank(),
strip.text = element_text(colour = "grey20"),
strip.placement = "outside") +
facet_wrap(~`Location ID`, ncol = 6)
Predicted (red stepped line) vs actual (grey dots)
Blowcount [Blows/m]
for test
piles.
Generally speaking, it looks like the predicted
Blowcount [Blows/m]
follow the actual values very well.
Nonetheless, this is not the case for every Location ID
. In
few cases, the model considerably overestimates or underestimates the
actual data. Further model improvements could address this issue.
The following table shows the relative error in predicting the total
number of blows (Number of blows
) for each pile.
<- test %>%
test_error group_by(`Location ID`) %>%
summarise(actual_blows = sum(`Blowcount [Blows/m]`),
predicted_blows = sum(predictions),
error = (predicted_blows - actual_blows)/actual_blows,
abs_error = abs(error)) %>%
arrange(desc(abs_error)) %>%
mutate(error = round(error, 3),
abs_error = round(abs_error, 3))
kable(top_n(test_error, 100),
digits = 3,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
Location ID | actual_blows | predicted_blows | error | abs_error |
---|---|---|---|---|
DA | 1926 | 2567.084 | 0.333 | 0.333 |
CP | 3626 | 2971.899 | -0.180 | 0.180 |
DD | 2184 | 2562.608 | 0.173 | 0.173 |
BV | 2946 | 3309.033 | 0.123 | 0.123 |
AN | 3066 | 3432.953 | 0.120 | 0.120 |
BS | 3958 | 3485.130 | -0.119 | 0.119 |
CT | 3420 | 3023.141 | -0.116 | 0.116 |
DS | 3326 | 2947.367 | -0.114 | 0.114 |
BM | 2262 | 2517.060 | 0.113 | 0.113 |
CL | 2834 | 3112.687 | 0.098 | 0.098 |
BT | 3782 | 3434.316 | -0.092 | 0.092 |
CF | 3604 | 3837.019 | 0.065 | 0.065 |
DK | 3514 | 3736.964 | 0.063 | 0.063 |
CA | 2594 | 2707.734 | 0.044 | 0.044 |
AY | 3056 | 2951.616 | -0.034 | 0.034 |
EG | 3570 | 3454.040 | -0.032 | 0.032 |
DN | 2940 | 2987.781 | 0.016 | 0.016 |
AS | 3116 | 3129.253 | 0.004 | 0.004 |
library(scales)
%>%
test_error ggplot(aes(error, `Location ID`)) +
geom_segment(aes(x = 0, xend = error, y = `Location ID`, yend = `Location ID`), size = 2, alpha = 1/2) +
geom_point(aes(colour = abs_error), size = 5) +
scale_colour_distiller(palette = "Spectral", limits = c(0, 0.4)) +
theme(panel.grid.minor = element_blank(),
legend.key.height = unit(2.25, "cm")) +
labs(x = "Error",
y = "",
colour = "Error") +
geom_vline(xintercept = 0, color = "grey20", size = 1) +
scale_x_continuous(labels = scales::percent_format(accuracy = .1)) +
coord_cartesian(xlim = c(-0.2, 0.4))
Relative error in predicting the total number of blows for
test
piles.
We see that the relative error in predicting the total number of
blows for each pile typically lies between 0% and 13%. Only one location
(location DA
) shows a much higher error, having an
overestimation of around 33%. The mean absolute error for all locations
is around 10%.
%>%
test_error summarise(mean_error = mean(abs_error))
## # A tibble: 1 x 1
## mean_error
## <dbl>
## 1 0.102
In this section we investigate models that are inherently nonlinear
in nature. The advantage of using these models rely on the fact that we
don’t need to know or specify the nonlinearity of the data prior to
model training. Among others, we consider models like neural networks,
support vector machines, and random forests. The analysis is done within
the framework of the caret
package, which is a
comprehensive and incredibly powerful machine learning tool for R. It
provides a uniform interface to build predictive models and, among
other, it contains tools/functions for data splitting, pre-processing,
feature selection model tuning using resampling, variable importance
estimation, etc. To date, 238 models are available within the
caret
package.
Note that we are not going into the details of the caret
package. Also, not much elaboration is provided on the used models. For
more on these topics please se the caret
package
documentation here and here.
Before we continue with model training, we need to prepare the scene a bit by performing the following steps.
library(doParallel)
detectCores()
getDoParWorkers()
<- makePSOCKcluster(10)
cl registerDoParallel(cl)
trainControl()
.library(caret)
<- trainControl(method = "repeatedcv",
control_object repeats = 5,
number = 10)
We train the models here and then we discuss on their performance.
set.seed(111)
<- train(`Blowcount [Blows/m]` ~ `Normalised ENTRHU [-]` + `z [m]` + `skin friction API [kPa]`,
gbm data = train,
method = "gbm",
tuneGrid = expand.grid(interaction.depth = seq(1, 7, by = 2),
n.trees = seq(100, 1000, by = 50),
shrinkage = c(0.01, 0.1),
n.minobsinnode = c(2, 20)),
verbose = FALSE,
trControl = control_object)
set.seed(111)
<- train(`Blowcount [Blows/m]` ~ `Normalised ENTRHU [-]` + `z [m]` + `skin friction API [kPa]`,
svm data = train,
method = "svmRadial",
tuneLength = 15,
preProc = c("center", "scale"),
trControl = control_object)
set.seed(111)
<- train(`Blowcount [Blows/m]` ~ `Normalised ENTRHU [-]` + `z [m]` + `skin friction API [kPa]`,
nnet data = train,
method = "avNNet",
tuneGrid = expand.grid(decay = c(0.001, 0.01, 0.1),
size = seq(1, 27, by = 2),
bag = FALSE),
preProc = c("center", "scale"),
linout = TRUE,
trace = FALSE,
maxit = 1000,
trControl = control_object)
set.seed(111)
<- train(`Blowcount [Blows/m]` ~ `Normalised ENTRHU [-]` + `z [m]` + `skin friction API [kPa]`,
rf data = train,
method = "rf",
tuneLength = 10,
ntrees = 1000,
importance = TRUE,
trControl = control_object)
## note: only 2 unique complexity parameters in default grid. Truncating the grid to 2 .
set.seed(111)
<- train(`Blowcount [Blows/m]` ~ `Normalised ENTRHU [-]` + `z [m]` + `skin friction API [kPa]`,
cb data = train,
method = "cubist",
tuneGrid = expand.grid(.committees = c(1, 5, 10, 50, 75, 100),
.neighbors = c(0, 1, 3, 5, 7, 9)),
trControl = control_object)
Stop parallel computing (we don’t need it anymore).
stopCluster(cl)
We put the models together and compare their performance in terms of
RMSE
.
<- resamples(list("Boosted Trees" = gbm,
all_models "Support Vector Machines" = svm,
"Neural Networks" = nnet,
"Random Forests" = rf,
"Cubist" = cb))
<- all_models$values %>%
gbm_RMSE select(Resample, `Boosted Trees~RMSE`) %>%
rename(RMSE = `Boosted Trees~RMSE`) %>%
mutate(Model = "Boosted Trees")
<- all_models$values %>%
svm_RMSE select(Resample, `Support Vector Machines~RMSE`) %>%
rename(RMSE = `Support Vector Machines~RMSE`) %>%
mutate(Model = "Support Vector Machines")
<- all_models$values %>%
nnet_RMSE select(Resample, `Neural Networks~RMSE`) %>%
rename(RMSE = `Neural Networks~RMSE`) %>%
mutate(Model = "Neural Networks")
<- all_models$values %>%
rf_RMSE select(Resample, `Random Forests~RMSE`) %>%
rename(RMSE = `Random Forests~RMSE`) %>%
mutate(Model = "Random Forests")
<- all_models$values %>%
cb_RMSE select(Resample, `Cubist~RMSE`) %>%
rename(RMSE = `Cubist~RMSE`) %>%
mutate(Model = "Cubist")
<- bind_rows(gbm_RMSE, svm_RMSE, nnet_RMSE, rf_RMSE, cb_RMSE)
all_RMSE
kable(all_RMSE,
digits = 3,
caption = "RMSE values for all models.",
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6") %>%
scroll_box(height = "300px")
Resample | RMSE | Model |
---|---|---|
Fold01.Rep1 | 16.099 | Boosted Trees |
Fold01.Rep2 | 16.893 | Boosted Trees |
Fold01.Rep3 | 16.585 | Boosted Trees |
Fold01.Rep4 | 17.713 | Boosted Trees |
Fold01.Rep5 | 16.167 | Boosted Trees |
Fold02.Rep1 | 15.602 | Boosted Trees |
Fold02.Rep2 | 14.386 | Boosted Trees |
Fold02.Rep3 | 16.885 | Boosted Trees |
Fold02.Rep4 | 16.177 | Boosted Trees |
Fold02.Rep5 | 16.844 | Boosted Trees |
Fold03.Rep1 | 15.678 | Boosted Trees |
Fold03.Rep2 | 15.560 | Boosted Trees |
Fold03.Rep3 | 16.715 | Boosted Trees |
Fold03.Rep4 | 16.984 | Boosted Trees |
Fold03.Rep5 | 16.601 | Boosted Trees |
Fold04.Rep1 | 17.007 | Boosted Trees |
Fold04.Rep2 | 16.288 | Boosted Trees |
Fold04.Rep3 | 15.689 | Boosted Trees |
Fold04.Rep4 | 16.703 | Boosted Trees |
Fold04.Rep5 | 16.022 | Boosted Trees |
Fold05.Rep1 | 15.156 | Boosted Trees |
Fold05.Rep2 | 16.037 | Boosted Trees |
Fold05.Rep3 | 13.842 | Boosted Trees |
Fold05.Rep4 | 14.720 | Boosted Trees |
Fold05.Rep5 | 15.199 | Boosted Trees |
Fold06.Rep1 | 14.469 | Boosted Trees |
Fold06.Rep2 | 16.216 | Boosted Trees |
Fold06.Rep3 | 15.422 | Boosted Trees |
Fold06.Rep4 | 15.421 | Boosted Trees |
Fold06.Rep5 | 15.657 | Boosted Trees |
Fold07.Rep1 | 17.102 | Boosted Trees |
Fold07.Rep2 | 14.901 | Boosted Trees |
Fold07.Rep3 | 16.116 | Boosted Trees |
Fold07.Rep4 | 15.398 | Boosted Trees |
Fold07.Rep5 | 15.292 | Boosted Trees |
Fold08.Rep1 | 17.053 | Boosted Trees |
Fold08.Rep2 | 18.169 | Boosted Trees |
Fold08.Rep3 | 17.881 | Boosted Trees |
Fold08.Rep4 | 15.278 | Boosted Trees |
Fold08.Rep5 | 17.015 | Boosted Trees |
Fold09.Rep1 | 15.866 | Boosted Trees |
Fold09.Rep2 | 15.920 | Boosted Trees |
Fold09.Rep3 | 15.409 | Boosted Trees |
Fold09.Rep4 | 15.598 | Boosted Trees |
Fold09.Rep5 | 15.215 | Boosted Trees |
Fold10.Rep1 | 16.121 | Boosted Trees |
Fold10.Rep2 | 15.896 | Boosted Trees |
Fold10.Rep3 | 15.794 | Boosted Trees |
Fold10.Rep4 | 16.319 | Boosted Trees |
Fold10.Rep5 | 16.050 | Boosted Trees |
Fold01.Rep1 | 16.528 | Support Vector Machines |
Fold01.Rep2 | 17.512 | Support Vector Machines |
Fold01.Rep3 | 17.377 | Support Vector Machines |
Fold01.Rep4 | 17.636 | Support Vector Machines |
Fold01.Rep5 | 16.696 | Support Vector Machines |
Fold02.Rep1 | 15.211 | Support Vector Machines |
Fold02.Rep2 | 14.638 | Support Vector Machines |
Fold02.Rep3 | 17.494 | Support Vector Machines |
Fold02.Rep4 | 16.876 | Support Vector Machines |
Fold02.Rep5 | 17.053 | Support Vector Machines |
Fold03.Rep1 | 16.236 | Support Vector Machines |
Fold03.Rep2 | 15.947 | Support Vector Machines |
Fold03.Rep3 | 16.766 | Support Vector Machines |
Fold03.Rep4 | 17.163 | Support Vector Machines |
Fold03.Rep5 | 16.893 | Support Vector Machines |
Fold04.Rep1 | 17.762 | Support Vector Machines |
Fold04.Rep2 | 16.280 | Support Vector Machines |
Fold04.Rep3 | 15.758 | Support Vector Machines |
Fold04.Rep4 | 17.225 | Support Vector Machines |
Fold04.Rep5 | 16.387 | Support Vector Machines |
Fold05.Rep1 | 15.095 | Support Vector Machines |
Fold05.Rep2 | 16.318 | Support Vector Machines |
Fold05.Rep3 | 14.439 | Support Vector Machines |
Fold05.Rep4 | 15.100 | Support Vector Machines |
Fold05.Rep5 | 15.536 | Support Vector Machines |
Fold06.Rep1 | 14.680 | Support Vector Machines |
Fold06.Rep2 | 16.166 | Support Vector Machines |
Fold06.Rep3 | 15.621 | Support Vector Machines |
Fold06.Rep4 | 15.561 | Support Vector Machines |
Fold06.Rep5 | 16.468 | Support Vector Machines |
Fold07.Rep1 | 17.722 | Support Vector Machines |
Fold07.Rep2 | 15.570 | Support Vector Machines |
Fold07.Rep3 | 16.511 | Support Vector Machines |
Fold07.Rep4 | 15.512 | Support Vector Machines |
Fold07.Rep5 | 15.492 | Support Vector Machines |
Fold08.Rep1 | 17.612 | Support Vector Machines |
Fold08.Rep2 | 18.556 | Support Vector Machines |
Fold08.Rep3 | 18.004 | Support Vector Machines |
Fold08.Rep4 | 15.315 | Support Vector Machines |
Fold08.Rep5 | 17.318 | Support Vector Machines |
Fold09.Rep1 | 16.165 | Support Vector Machines |
Fold09.Rep2 | 15.728 | Support Vector Machines |
Fold09.Rep3 | 15.348 | Support Vector Machines |
Fold09.Rep4 | 15.760 | Support Vector Machines |
Fold09.Rep5 | 14.962 | Support Vector Machines |
Fold10.Rep1 | 16.286 | Support Vector Machines |
Fold10.Rep2 | 16.657 | Support Vector Machines |
Fold10.Rep3 | 16.292 | Support Vector Machines |
Fold10.Rep4 | 17.151 | Support Vector Machines |
Fold10.Rep5 | 16.732 | Support Vector Machines |
Fold01.Rep1 | 15.736 | Neural Networks |
Fold01.Rep2 | 17.208 | Neural Networks |
Fold01.Rep3 | 16.718 | Neural Networks |
Fold01.Rep4 | 17.040 | Neural Networks |
Fold01.Rep5 | 16.164 | Neural Networks |
Fold02.Rep1 | 15.268 | Neural Networks |
Fold02.Rep2 | 14.670 | Neural Networks |
Fold02.Rep3 | 17.005 | Neural Networks |
Fold02.Rep4 | 16.266 | Neural Networks |
Fold02.Rep5 | 17.155 | Neural Networks |
Fold03.Rep1 | 15.738 | Neural Networks |
Fold03.Rep2 | 15.997 | Neural Networks |
Fold03.Rep3 | 16.470 | Neural Networks |
Fold03.Rep4 | 16.570 | Neural Networks |
Fold03.Rep5 | 16.107 | Neural Networks |
Fold04.Rep1 | 17.436 | Neural Networks |
Fold04.Rep2 | 16.072 | Neural Networks |
Fold04.Rep3 | 15.985 | Neural Networks |
Fold04.Rep4 | 16.816 | Neural Networks |
Fold04.Rep5 | 15.538 | Neural Networks |
Fold05.Rep1 | 15.171 | Neural Networks |
Fold05.Rep2 | 16.279 | Neural Networks |
Fold05.Rep3 | 14.288 | Neural Networks |
Fold05.Rep4 | 15.002 | Neural Networks |
Fold05.Rep5 | 14.981 | Neural Networks |
Fold06.Rep1 | 14.168 | Neural Networks |
Fold06.Rep2 | 15.676 | Neural Networks |
Fold06.Rep3 | 15.463 | Neural Networks |
Fold06.Rep4 | 15.858 | Neural Networks |
Fold06.Rep5 | 15.901 | Neural Networks |
Fold07.Rep1 | 16.921 | Neural Networks |
Fold07.Rep2 | 15.037 | Neural Networks |
Fold07.Rep3 | 16.030 | Neural Networks |
Fold07.Rep4 | 15.312 | Neural Networks |
Fold07.Rep5 | 15.721 | Neural Networks |
Fold08.Rep1 | 17.165 | Neural Networks |
Fold08.Rep2 | 17.783 | Neural Networks |
Fold08.Rep3 | 17.704 | Neural Networks |
Fold08.Rep4 | 15.366 | Neural Networks |
Fold08.Rep5 | 16.683 | Neural Networks |
Fold09.Rep1 | 15.754 | Neural Networks |
Fold09.Rep2 | 15.470 | Neural Networks |
Fold09.Rep3 | 14.933 | Neural Networks |
Fold09.Rep4 | 16.166 | Neural Networks |
Fold09.Rep5 | 15.534 | Neural Networks |
Fold10.Rep1 | 16.380 | Neural Networks |
Fold10.Rep2 | 16.187 | Neural Networks |
Fold10.Rep3 | 15.924 | Neural Networks |
Fold10.Rep4 | 16.634 | Neural Networks |
Fold10.Rep5 | 16.517 | Neural Networks |
Fold01.Rep1 | 15.365 | Random Forests |
Fold01.Rep2 | 16.292 | Random Forests |
Fold01.Rep3 | 15.618 | Random Forests |
Fold01.Rep4 | 16.994 | Random Forests |
Fold01.Rep5 | 15.255 | Random Forests |
Fold02.Rep1 | 15.714 | Random Forests |
Fold02.Rep2 | 14.688 | Random Forests |
Fold02.Rep3 | 16.411 | Random Forests |
Fold02.Rep4 | 15.962 | Random Forests |
Fold02.Rep5 | 16.036 | Random Forests |
Fold03.Rep1 | 15.312 | Random Forests |
Fold03.Rep2 | 14.772 | Random Forests |
Fold03.Rep3 | 16.543 | Random Forests |
Fold03.Rep4 | 16.033 | Random Forests |
Fold03.Rep5 | 15.624 | Random Forests |
Fold04.Rep1 | 16.148 | Random Forests |
Fold04.Rep2 | 16.332 | Random Forests |
Fold04.Rep3 | 14.804 | Random Forests |
Fold04.Rep4 | 16.231 | Random Forests |
Fold04.Rep5 | 15.388 | Random Forests |
Fold05.Rep1 | 14.062 | Random Forests |
Fold05.Rep2 | 15.585 | Random Forests |
Fold05.Rep3 | 13.019 | Random Forests |
Fold05.Rep4 | 13.993 | Random Forests |
Fold05.Rep5 | 14.575 | Random Forests |
Fold06.Rep1 | 13.792 | Random Forests |
Fold06.Rep2 | 16.092 | Random Forests |
Fold06.Rep3 | 14.980 | Random Forests |
Fold06.Rep4 | 14.497 | Random Forests |
Fold06.Rep5 | 14.712 | Random Forests |
Fold07.Rep1 | 16.143 | Random Forests |
Fold07.Rep2 | 14.246 | Random Forests |
Fold07.Rep3 | 15.592 | Random Forests |
Fold07.Rep4 | 14.521 | Random Forests |
Fold07.Rep5 | 15.323 | Random Forests |
Fold08.Rep1 | 16.371 | Random Forests |
Fold08.Rep2 | 16.933 | Random Forests |
Fold08.Rep3 | 17.364 | Random Forests |
Fold08.Rep4 | 14.776 | Random Forests |
Fold08.Rep5 | 16.323 | Random Forests |
Fold09.Rep1 | 14.631 | Random Forests |
Fold09.Rep2 | 15.350 | Random Forests |
Fold09.Rep3 | 14.735 | Random Forests |
Fold09.Rep4 | 15.857 | Random Forests |
Fold09.Rep5 | 14.345 | Random Forests |
Fold10.Rep1 | 15.068 | Random Forests |
Fold10.Rep2 | 14.500 | Random Forests |
Fold10.Rep3 | 15.366 | Random Forests |
Fold10.Rep4 | 15.519 | Random Forests |
Fold10.Rep5 | 15.448 | Random Forests |
Fold01.Rep1 | 15.883 | Cubist |
Fold01.Rep2 | 16.848 | Cubist |
Fold01.Rep3 | 16.438 | Cubist |
Fold01.Rep4 | 17.456 | Cubist |
Fold01.Rep5 | 16.010 | Cubist |
Fold02.Rep1 | 15.574 | Cubist |
Fold02.Rep2 | 14.889 | Cubist |
Fold02.Rep3 | 16.890 | Cubist |
Fold02.Rep4 | 16.065 | Cubist |
Fold02.Rep5 | 17.243 | Cubist |
Fold03.Rep1 | 15.856 | Cubist |
Fold03.Rep2 | 15.958 | Cubist |
Fold03.Rep3 | 16.510 | Cubist |
Fold03.Rep4 | 16.660 | Cubist |
Fold03.Rep5 | 15.962 | Cubist |
Fold04.Rep1 | 17.266 | Cubist |
Fold04.Rep2 | 16.067 | Cubist |
Fold04.Rep3 | 15.655 | Cubist |
Fold04.Rep4 | 16.260 | Cubist |
Fold04.Rep5 | 15.647 | Cubist |
Fold05.Rep1 | 14.726 | Cubist |
Fold05.Rep2 | 16.052 | Cubist |
Fold05.Rep3 | 13.820 | Cubist |
Fold05.Rep4 | 14.646 | Cubist |
Fold05.Rep5 | 15.088 | Cubist |
Fold06.Rep1 | 14.632 | Cubist |
Fold06.Rep2 | 15.992 | Cubist |
Fold06.Rep3 | 15.044 | Cubist |
Fold06.Rep4 | 15.200 | Cubist |
Fold06.Rep5 | 15.592 | Cubist |
Fold07.Rep1 | 16.871 | Cubist |
Fold07.Rep2 | 14.986 | Cubist |
Fold07.Rep3 | 16.169 | Cubist |
Fold07.Rep4 | 15.456 | Cubist |
Fold07.Rep5 | 15.695 | Cubist |
Fold08.Rep1 | 17.076 | Cubist |
Fold08.Rep2 | 17.512 | Cubist |
Fold08.Rep3 | 17.701 | Cubist |
Fold08.Rep4 | 15.363 | Cubist |
Fold08.Rep5 | 17.108 | Cubist |
Fold09.Rep1 | 15.283 | Cubist |
Fold09.Rep2 | 15.736 | Cubist |
Fold09.Rep3 | 15.292 | Cubist |
Fold09.Rep4 | 15.804 | Cubist |
Fold09.Rep5 | 14.847 | Cubist |
Fold10.Rep1 | 15.642 | Cubist |
Fold10.Rep2 | 15.590 | Cubist |
Fold10.Rep3 | 16.190 | Cubist |
Fold10.Rep4 | 16.659 | Cubist |
Fold10.Rep5 | 15.971 | Cubist |
The above table contains the RMSE
values for the
resampling results for all models. A plot of these data is shown in the
following.
<- all_RMSE %>%
median_RMSE group_by(Model) %>%
summarise(`median RMSE` = median(RMSE))
%>%
all_RMSE ggplot(aes(RMSE, fct_reorder(Model, RMSE, median))) +
geom_point(aes(fill = RMSE), size = 5, shape = 21, colour = "grey40") +
scale_fill_distiller(palette = "Spectral") +
labs(y = "") +
theme(panel.grid.minor = element_blank(),
legend.position = "none") +
geom_point(data = median_RMSE, aes(`median RMSE`, Model), size = 1, colour = "grey20", shape = "|", stroke = 10)
RMSE
values for the resampling results for all
models.
test
dataWe validate the best model (Random Forests
, choosed
based on the median value of RMSE
) by checking its
performance against the test
data. We get a
RMSE
value of around 13.5, which is a better value compared
to previous less-complex models.
$predictions <- predict(rf, newdata = test)
testsqrt(sum((test$'Blowcount [Blows/m]' - test$predictions)^2)/nrow(test))
## [1] 13.57531
<- test %>%
plot_rf1 ggplot(aes(`Normalised ENTRHU [-]`, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_point(data = test, aes(`Normalised ENTRHU [-]`, predictions), color = "tomato", alpha = 1) +
expand_limits(x = 0, y = 0) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Model fit (red) vs actual data.",
x = "Normalised ENTRHU [-]",
y = "Blowcount [Blows/m]")
<- test %>%
plot_rf2 ggplot(aes(predictions, `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
expand_limits(x = 0, y = 0) +
geom_abline(color = "grey20", size = 1) +
coord_fixed(xlim = c(0, 150), ylim = c(0, 150)) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Predicted vs actual Blowcount [Blows/m]",
x = "Predicted Blowcount [Blows/m]",
y = "Actual Blowcount [Blows/m]")
<- test %>%
plot_rf3 ggplot(aes(`Normalised ENTRHU [-]`, predictions - `Blowcount [Blows/m]`)) +
geom_point(alpha = 1/20) +
geom_hline(aes(yintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Scatter plot of residuals.",
x = "Normalised ENTRHU [-]",
y = "Residuals")
<- test %>%
plot_rf4 ggplot(aes(predictions - `Blowcount [Blows/m]`)) +
geom_histogram(binwidth = 2, alpha = 1/5) +
geom_vline(aes(xintercept = 0), color = "grey20", size = 1) +
theme(panel.grid.minor = element_blank(),
aspect.ratio = 1,
plot.title = element_text(size = 9, face = "italic")) +
labs(title = "Histogram of residuals.",
x = "Residuals",
y = "Count") +
coord_cartesian(xlim = c(-100, 100))
<- plot_rf1 + plot_rf2
patch_rf1 <- plot_rf3 + plot_rf4
patch_rf2
/ patch_rf2 patch_rf1
Results for Random Forests model applied to the test
dataset.
In analogy to what we did for the Natural Spline models, we can estimate the relative error in predicting the total number of blows for each pile.
<- test %>%
test_error group_by(`Location ID`) %>%
summarise(actual_blows = sum(`Blowcount [Blows/m]`),
predicted_blows = sum(predictions),
error = (predicted_blows - actual_blows)/actual_blows,
abs_error = abs(error)) %>%
arrange(desc(abs_error)) %>%
mutate(error = round(error, 3),
abs_error = round(abs_error, 3))
kable(top_n(test_error, 100),
digits = 3,
align = "r") %>%
kable_styling(full_width = T, font_size = 11, position = "center") %>%
row_spec(0, color = "grey10", background = "#F4F5F6")
Location ID | actual_blows | predicted_blows | error | abs_error |
---|---|---|---|---|
DA | 1926 | 2512.189 | 0.304 | 0.304 |
CP | 3626 | 3081.291 | -0.150 | 0.150 |
DD | 2184 | 2449.782 | 0.122 | 0.122 |
CT | 3420 | 3063.949 | -0.104 | 0.104 |
BM | 2262 | 2495.518 | 0.103 | 0.103 |
BS | 3958 | 3550.212 | -0.103 | 0.103 |
DS | 3326 | 3024.430 | -0.091 | 0.091 |
BT | 3782 | 3478.317 | -0.080 | 0.080 |
BV | 2946 | 3159.839 | 0.073 | 0.073 |
AN | 3066 | 3266.817 | 0.065 | 0.065 |
CL | 2834 | 2996.335 | 0.057 | 0.057 |
CF | 3604 | 3779.436 | 0.049 | 0.049 |
DN | 2940 | 3068.092 | 0.044 | 0.044 |
DK | 3514 | 3644.969 | 0.037 | 0.037 |
AY | 3056 | 2970.421 | -0.028 | 0.028 |
AS | 3116 | 3031.852 | -0.027 | 0.027 |
EG | 3570 | 3644.214 | 0.021 | 0.021 |
CA | 2594 | 2603.164 | 0.004 | 0.004 |
%>%
test_error ggplot(aes(error, `Location ID`)) +
geom_segment(aes(x = 0, xend = error, y = `Location ID`, yend = `Location ID`), size = 2, alpha = 1/2) +
geom_point(aes(colour = abs_error), size = 5) +
scale_colour_distiller(palette = "Spectral", limits = c(0, 0.4)) +
theme(panel.grid.minor = element_blank(),
legend.key.height = unit(2.25, "cm")) +
labs(x = "Error",
y = "",
colour = "Error") +
geom_vline(xintercept = 0, color = "grey20", size = 1) +
scale_x_continuous(labels = scales::percent_format(accuracy = .1)) +
coord_cartesian(xlim = c(-0.2, 0.4))
Relative error in predicting the total number of blows for
test
piles.
%>%
test_error summarise(mean_error = mean(abs_error))
## # A tibble: 1 x 1
## mean_error
## <dbl>
## 1 0.0812
The results for the Random Forests model are similar to the ones from Natural Splines, but slightly better. We reach an average error of around 8%.
Let’s make a short summary of the work presented in this post, by considering few discussion points.
RMSE
as low as 13.5. This is
consistent with a relative error in predicting the total number of blows
for a pile as low as 8%. I assume, the best way to create a better idea
on whether this error level is acceptable, is to compare it with the
error in predicting pile driveability by means of other methods used in
the current engineering practice.That’s it! Thanks for reading 👋
4.1.3 (2022-03-10) R version
* version date (UTC) lib source
package 0.2.1 2019-03-21 [1] CRAN (R 4.1.3)
assertthat 1.4.1 2021-12-13 [1] CRAN (R 4.1.2)
backports 4.0.4 2020-08-04 [1] CRAN (R 4.1.3)
bit 4.0.5 2020-08-30 [1] CRAN (R 4.1.3)
bit64 * 0.7.12 2022-01-28 [1] CRAN (R 4.1.3)
broom 0.3.1 2021-10-06 [1] CRAN (R 4.1.3)
bslib * 6.0-91 2022-03-11 [1] CRAN (R 4.1.3)
caret 1.1.0 2016-07-27 [1] CRAN (R 4.1.3)
cellranger 7.3-20 2022-01-16 [2] CRAN (R 4.1.3)
class 3.2.0 2022-02-14 [1] CRAN (R 4.1.3)
cli 0.8.0 2022-02-22 [1] CRAN (R 4.1.3)
clipr 0.2-18 2020-11-04 [2] CRAN (R 4.1.3)
codetools 2.0-3 2022-02-21 [1] CRAN (R 4.1.3)
colorspace * 0.92 2021-11-18 [1] CRAN (R 4.1.3)
corrplot 1.5.1 2022-03-26 [1] CRAN (R 4.1.3)
crayon 0.4.0 2022-02-05 [1] CRAN (R 4.1.3)
Cubist 1.14.2 2021-09-27 [1] CRAN (R 4.1.3)
data.table 1.1.2 2021-12-20 [1] CRAN (R 4.1.3)
DBI 2.1.1 2021-04-06 [1] CRAN (R 4.1.3)
dbplyr 1.4.1 2022-03-06 [1] CRAN (R 4.1.3)
desc 0.3.0 2022-03-27 [1] CRAN (R 4.1.3)
details 0.6.29 2021-12-01 [1] CRAN (R 4.1.3)
digest * 1.0.17 2022-02-07 [1] CRAN (R 4.1.3)
doParallel * 1.0.8 2022-02-08 [1] CRAN (R 4.1.3)
dplyr 0.3.2 2021-04-29 [1] CRAN (R 4.1.3)
ellipsis 0.15 2022-02-18 [1] CRAN (R 4.1.3)
evaluate 1.0.3 2022-03-24 [1] CRAN (R 4.1.3)
fansi 2.1.0 2021-02-28 [1] CRAN (R 4.1.3)
farver 1.1.0 2021-01-25 [1] CRAN (R 4.1.3)
fastmap * 0.5.1 2021-01-27 [1] CRAN (R 4.1.3)
forcats * 1.5.2 2022-02-02 [1] CRAN (R 4.1.3)
foreach 1.5.2 2021-12-08 [1] CRAN (R 4.1.3)
fs 1.24.0 2022-02-19 [1] CRAN (R 4.1.3)
future 1.8.1 2021-08-10 [1] CRAN (R 4.1.3)
future.apply 2.1.8 2020-07-15 [1] CRAN (R 4.1.3)
gbm 0.1.2 2022-01-31 [1] CRAN (R 4.1.3)
generics * 0.3.3 2021-03-05 [1] CRAN (R 4.1.3)
ggforce * 3.3.5 2021-06-25 [1] CRAN (R 4.1.3)
ggplot2 * 2.0.5 2021-02-23 [1] CRAN (R 4.1.3)
ggraph 0.9.1 2021-01-15 [1] CRAN (R 4.1.3)
ggrepel 0.14.0 2020-11-22 [1] CRAN (R 4.1.1)
globals 1.6.2 2022-02-24 [1] CRAN (R 4.1.3)
glue 1.0.0 2022-02-03 [1] CRAN (R 4.1.2)
gower 0.8.0 2022-01-03 [1] CRAN (R 4.1.3)
graphlayouts 2.3 2017-09-09 [1] CRAN (R 4.1.3)
gridExtra 0.3.0 2019-03-25 [1] CRAN (R 4.1.3)
gtable 0.2.0 2022-01-24 [1] CRAN (R 4.1.3)
hardhat 2.4.3 2021-08-04 [1] CRAN (R 4.1.3)
haven 0.9 2021-04-16 [1] CRAN (R 4.1.3)
highr 1.1.1 2021-09-26 [1] CRAN (R 4.1.3)
hms 0.5.2 2021-08-25 [1] CRAN (R 4.1.3)
htmltools 1.4.2 2020-07-20 [1] CRAN (R 4.1.3)
httr * 1.3.0 2022-04-01 [1] CRAN (R 4.1.3)
igraph 0.9-12 2021-09-15 [1] CRAN (R 4.1.3)
ipred * 1.0.14 2022-02-05 [1] CRAN (R 4.1.3)
iterators 0.1.4 2021-04-26 [1] CRAN (R 4.1.3)
jquerylib 1.8.0 2022-02-22 [1] CRAN (R 4.1.3)
jsonlite * 1.3.4 2021-02-20 [1] CRAN (R 4.1.3)
kableExtra 0.9-30 2022-04-02 [1] CRAN (R 4.1.3)
kernlab * 1.38 2022-03-25 [1] CRAN (R 4.1.3)
knitr 0.4.2 2020-10-20 [1] CRAN (R 4.1.1)
labeling * 0.20-45 2021-09-22 [2] CRAN (R 4.1.3)
lattice 1.6.10 2021-09-02 [1] CRAN (R 4.1.3)
lava 1.0.1 2021-09-24 [1] CRAN (R 4.1.3)
lifecycle 0.8.0 2019-12-05 [1] CRAN (R 4.1.3)
listenv 1.8.0 2021-10-07 [1] CRAN (R 4.1.3)
lubridate 2.0.3 2022-03-30 [1] CRAN (R 4.1.3)
magrittr 7.3-55 2022-01-16 [2] CRAN (R 4.1.3)
MASS 1.4-0 2021-12-08 [2] CRAN (R 4.1.3)
Matrix 1.2.2.2 2020-03-17 [1] CRAN (R 4.1.3)
ModelMetrics 0.1.8 2020-05-19 [1] CRAN (R 4.1.3)
modelr 0.5.0 2018-06-12 [1] CRAN (R 4.1.3)
munsell 3.1-155 2022-01-16 [2] CRAN (R 4.1.3)
nlme 7.3-17 2022-01-16 [2] CRAN (R 4.1.3)
nnet 1.31.0 2022-04-07 [1] CRAN (R 4.1.3)
parallelly * 1.1.1 2020-12-17 [1] CRAN (R 4.1.3)
patchwork 1.7.0 2022-02-01 [1] CRAN (R 4.1.3)
pillar 2.0.3 2019-09-22 [1] CRAN (R 4.1.3)
pkgconfig 1.8.7 2022-03-24 [1] CRAN (R 4.1.3)
plyr 0.1-7 2013-12-03 [1] CRAN (R 4.1.1)
png 1.10-0 2019-03-14 [1] CRAN (R 4.1.1)
polyclip 1.18.0 2021-09-03 [1] CRAN (R 4.1.3)
pROC 2019.11.13 2019-11-17 [1] CRAN (R 4.1.3)
prodlim * 0.3.4 2020-04-17 [1] CRAN (R 4.1.3)
purrr 2.5.1 2021-08-19 [1] CRAN (R 4.1.3)
R6 4.7-1 2022-02-03 [1] CRAN (R 4.1.3)
randomForest * 1.1-3 2022-04-03 [1] CRAN (R 4.1.3)
RColorBrewer 1.0.8.3 2022-03-17 [1] CRAN (R 4.1.3)
Rcpp * 2.1.2 2022-01-30 [1] CRAN (R 4.1.3)
readr 1.4.0 2022-03-28 [1] CRAN (R 4.1.3)
readxl 0.2.0 2022-02-18 [1] CRAN (R 4.1.3)
recipes 2.0.1 2021-08-05 [1] CRAN (R 4.1.3)
reprex 1.4.4 2020-04-09 [1] CRAN (R 4.1.3)
reshape2 1.0.2 2022-03-04 [1] CRAN (R 4.1.3)
rlang 2.13 2022-03-10 [1] CRAN (R 4.1.3)
rmarkdown 4.1.16 2022-01-24 [2] CRAN (R 4.1.3)
rpart 2.0.3 2022-04-02 [1] CRAN (R 4.1.3)
rprojroot 0.13 2020-11-12 [1] CRAN (R 4.1.3)
rstudioapi 1.0.2 2021-10-16 [1] CRAN (R 4.1.3)
rvest 0.4.1 2022-03-23 [1] CRAN (R 4.1.3)
sass * 1.1.1 2020-05-11 [1] CRAN (R 4.1.3)
scales 1.2.2 2021-12-06 [1] CRAN (R 4.1.3)
sessioninfo 1.7.6 2021-11-29 [1] CRAN (R 4.1.2)
stringi * 1.4.0 2019-02-10 [1] CRAN (R 4.1.3)
stringr 3.2-13 2021-08-24 [2] CRAN (R 4.1.3)
survival 2.1.0 2022-02-03 [1] CRAN (R 4.1.3)
svglite 1.0.4 2022-02-11 [1] CRAN (R 4.1.3)
systemfonts * 3.1.6 2021-11-07 [1] CRAN (R 4.1.3)
tibble 1.2.1 2022-04-05 [1] CRAN (R 4.1.3)
tidygraph * 1.2.0 2022-02-01 [1] CRAN (R 4.1.3)
tidyr 1.1.2 2022-02-21 [1] CRAN (R 4.1.3)
tidyselect * 1.3.1 2021-04-15 [1] CRAN (R 4.1.3)
tidyverse 3043.102 2018-02-21 [1] CRAN (R 4.1.2)
timeDate 1.0.2 2021-03-23 [1] CRAN (R 4.1.3)
tweenr 0.3.0 2022-03-28 [1] CRAN (R 4.1.3)
tzdb 1.2.2 2021-07-24 [1] CRAN (R 4.1.3)
utf8 0.4.0 2022-03-30 [1] CRAN (R 4.1.3)
vctrs 0.6.2 2021-10-13 [1] CRAN (R 4.1.3)
viridis 0.4.0 2021-04-13 [1] CRAN (R 4.1.3)
viridisLite 1.5.7 2021-11-30 [1] CRAN (R 4.1.3)
vroom 0.5.2 2019-11-22 [1] CRAN (R 4.1.3)
webshot 2.5.0 2022-03-03 [1] CRAN (R 4.1.3)
withr 0.30 2022-03-02 [1] CRAN (R 4.1.3)
xfun 1.3.3 2021-11-30 [1] CRAN (R 4.1.3)
xml2 2.3.5 2022-02-21 [1] CRAN (R 4.1.2)
yaml
1] C:/Users/User/OneDrive/Documents/R/win-library/4.1
[2] C:/Program Files/R/R-4.1.3/library [